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ABSTRACT OF DISSERTATION

RICHARDSON EXTRAPOLATION-BASED
HIGH ACCURACY HIGH EFFICIENCY COMPUTATION

FOR PARTIAL DIFFERENTIAL EQUATIONS

In this dissertation, Richardson extrapolation and other computational techniques
are used to develop a series of high accuracy high efficiency solution techniques for
solving partial differential equations (PDEs).

A Richardson extrapolation-based sixth-order method with multiple coarse grid
(MCG) updating strategy is developed for 2D and 3D steady-state equations on
uniform grids. Richardson extrapolation is applied to explicitly obtain a sixth-order
solution on the coarse grid from two fourth-order solutions with different related scale
grids. The MCG updating strategy directly computes a sixth-order solution on the
fine grid by using various combinations of multiple coarse grids. A multiscale multi-
grid (MSMG) method is used to solve the linear systems resulting from fourth-order
compact (FOC) discretizations. Numerical investigations show that the proposed
methods compute high accuracy solutions and have better computational efficiency
and scalability than the existing Richardson extrapolation-based sixth order method
with iterative operator based interpolation.

Completed Richardson extrapolation is explored to compute sixth-order solutions
on the entire fine grid. The correction between the fourth-order solution and the
extrapolated sixth-order solution rather than the extrapolated sixth-order solution
is involved in the interpolation process to compute sixth-order solutions for all fine
grid points. The completed Richardson extrapolation does not involve significant
computational cost, thus it can reach high accuracy and high efficiency goals at the
same time.

There are three different techniques worked with Richardson extrapolation for
computing fine grid sixth-order solutions, which are the iterative operator based in-
terpolation, the MCG updating strategy and the completed Richardson extrapolation.
In order to compare the accuracy of these Richardson extrapolation-based sixth-order
methods, truncation error analysis is conducted on solving a 2D Poisson equation.
Numerical comparisons are also carried out to verify the theoretical analysis.

Richardson extrapolation-based high accuracy high efficiency computation is ex-
tended to solve unsteady-state equations. A higher-order alternating direction im-
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plicit (ADI) method with completed Richardson extrapolation is developed for solving
unsteady 2D convection-diffusion equations. The completed Richardson extrapola-
tion is used to improve the accuracy of the solution obtained from a high-order ADI
method in spatial and temporal domains simultaneously. Stability analysis is given
to show the effects of Richardson extrapolation on stable numerical solutions from
the underlying ADI method.

KEYWORDS: Partial differential equations, high-order compact schemes, Richard-
son extrapolation, multiple coarse grids, multiscale multigrid method

Ruxin Dai

May 6, 2014
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(♯ denotes the group name). . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-
six method and the MCG-update-six methods with different 2D sub-
problem solvers for solving Problem 1 with Re = 0. . . . . . . . . . . 63

3.4 Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-
six method and the MCG-update-six methods with different 2D sub-
problem solvers for solving Problem 1 with Re = 10. . . . . . . . . . . 66

3.5 Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-six
method and the MCG-update-six methods for solving Problem 1 with
Re = 103 and Re = 104. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-
six method and the MCG-update-six methods with different 2D sub-
problem solvers for solving Problem 2 with Re = 10. . . . . . . . . . . 68

3.7 Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-six
method and the MCG-update-six methods for solving Problem 2 with
Re = 103 and Re = 104. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Numerical comparison between the sixth-order method with Richard-
son extrapolation and iterative operator based interpolation and the
sixth-order method with completed Richardson extrapolation . . . . . 81

5.1 Truncation errors of three Richardson extrapolation-based sixth-order
methods for solving the 2D Poisson equation. . . . . . . . . . . . . . 93

5.2 Accuracy comparison among three Richardson extrapolation-based sixth-
order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



www.manaraa.com

5.3 CPU time in seconds for three Richardson extrapolation-based sixth-
order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/N and ∆t = h2 at T = 0.25 for Problem 1. . . . . . . . . 116

6.2 L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/40 at T = 0.5 for Problem 1. . . . . . . . . . . . . . . . . 116

6.3 L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 2/N and ∆t = h2 at T = 0.5 for Problem 2. . . . . . . . . . 118

6.4 L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/80 at T = 1.0 for Problem 2. . . . . . . . . . . . . . . . . 119

ix



www.manaraa.com

List of Figures

1.1 Illustration of the Richardson extrapolation and interpolation process
in a 1D two-grid computation. Solution values at the boundary points
are known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Smooth error component on Ω∆ projected onto Ω2∆. . . . . . . . . . 10
1.3 Illustration of three different multigrid schemes on four levels: (a) V-

cycle (b) W-cycle (c) FMG scheme. . . . . . . . . . . . . . . . . . . . 12
1.4 Illustration of the standard multiscale multigrid method. . . . . . . . 14
1.5 Illustration of the multiple coarse grids for 1D problem. . . . . . . . . 15
1.6 Matrix structure for 2D Crank-Nicolson method. . . . . . . . . . . . . 16

2.1 Injection from the standard coarse grid to the fine grid. . . . . . . . . 21
2.2 Operator based interpolation scheme for a 5× 5 fine grid. . . . . . . . 22
2.3 Illustration of the multiple coarse grids for 2D problem. . . . . . . . . 26
2.4 Illustration of the MCG updating strategy in 2D. . . . . . . . . . . . 27
2.5 Comparison of the Accuracy-Improve CPU time and the number of

grid intervals between the iterative refinement strategy and the MCG
updating strategy for solving Problem 1. Each symbol with increasing
CPU cost corresponds to an increasing fine grid: 64, 128, 256, 512 and
1024 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Comparison of the Accuracy-Improve CPU time and the number of
grid intervals between the iterative refinement strategy and the MCG
updating strategy for solving Problem 2 (P = 105). Each symbol with
increasing CPU cost corresponds to an increasing fine grid: 64, 128,
256, 512 and 1024 intervals. . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Comparison of the Accuracy-Improve CPU time between the iterative
refinement strategy and the MCG updating strategy for solving Prob-
lem 2 (n = 256) with different P values. . . . . . . . . . . . . . . . . 41

3.1 Labeling of the 3D grid points in a cuboid. . . . . . . . . . . . . . . . 45
3.2 Group information of 3D grid points in a cuboid. . . . . . . . . . . . 49
3.3 X-odd grid view: fine grid points from groups a and f . . . . . . . . . 51
3.4 Z-odd grid view: fine grid points from groups a and g. . . . . . . . . 52
3.5 Y-odd grid view: fine grid points from groups a and h. . . . . . . . . 53
3.6 Y-even grid view: fine grid points from groups a, c, f and g. . . . . . 55
3.7 Z-even grid view: fine grid points from groups a, d, f and h. . . . . . 56
3.8 X-even grid view: fine grid points from groups a, e, g and h. . . . . . 58
3.9 Comparison of the maximum errors and the total CPU time between

the Iter-update-six method and the MCG-update-six(2D-line) method
for solving Problem 1(Re=0). Each symbol with increasing CPU time
corresponds to an increasing fine grid: 8, 16, 32, 64, and 128 intervals. 64

x



www.manaraa.com

3.10 Comparison of the updating CPU time and the number of grid intervals
between the Iter-update-six method and the MCG-update-six(2D-line)
method for solving Problem 1 (Re = 10). Each symbol with increasing
CPU time corresponds to an increasing fine grid: 8, 16, 32, 64, and
128 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Comparison of the maximum absolute errors and the CPU time for
solving Problem 2 (Re = 104). Each symbol with increasing CPU time
corresponds to an increasing fine grid: 16, 32, 64, and 128 intervals. . 70

4.1 Illustration of the interpolation strategy in 2D. . . . . . . . . . . . . . 77

6.1 Example of a fine and coarse grid in space and time. . . . . . . . . . 105
6.2 Comparison of the L2-norm errors produced by the CRE-ADI(II) method

and the HOC-ADI method at each coarse time step for Problem 1. . . 117
6.3 Comparison of the L2-norm errors produced by the CRE-ADI(II) method

and the HOC-ADI method at each coarse time step for Problem 2. . . 119

xi



www.manaraa.com

1 Introduction

Computational science and engineering (CSE) is a rapidly growing multidisciplinary

field that deals with the development and application of computational models and

simulations to solve complex physical problems, such as global weather forecasting,

ocean modeling, combustion simulations, automobile crash studies, fluid dynamics,

and oil and gas exploration. Computer modeling and simulation is essential because it

provides the capability to enter fields that are either inaccessible or prohibitively ex-

pensive to carry out traditional experimentation. Since partial differential equations

(PDEs) such as Poisson equation, convection-diffusion equations, and Navier-Stokes

equations form the governing equations of most CSE modeling and simulation appli-

cations, numerical solutions of PDEs, as a key issue, have been the topic of research

interest for many years.

There are two typical steps to solve PDEs through numerical methods. The first

step is to discretize a PDE to obtain a linear system, which changes a continuous

problem into a discrete problem. The commonly used numerical techniques include

finite difference methods, finite element methods, and finite volume methods. The

selection of discretization method for PDEs is application-oriented. The finite dif-

ference methods are useful for simple geometry domains because they are easy to

implement and can reach higher-order accuracy. The finite element methods and fi-

nite volume methods are often applied to complex domains because they are allowed

to use unstructured meshes. The second step is to solve the linear system from the

discretized PDE. Since the resulting linear systems are usually large scale sparse lin-

ear systems, iterative methods stand out because of their easily implementation on

high performance computers and they are faster for large systems if they converge

fast [61]. The solvers for sparse linear systems mainly include basic iterative methods

(Jacobi, Gauss-Seidel, and Successive Overrelaxation), Krylov subspace methods, and

1
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multigrid methods.

The main goal of the numerical computation is to seek an approximate solution

with acceptable accuracy in the least amount of computing time. As for numerical

solutions of PDEs, the discretization method controls the solution accuracy because

the discretization error becomes dominant when iterative methods converge. The

linear system solver dictates the overall computing time because majority of the run-

time for solving PDEs is spent on solving resulting linear systems. In general, people

who study discretization methods and linear system solvers have their exclusive goals

in mind. The motivation of my research work is to develop and analyze numerical

algorithms for solving PDEs with both accuracy and efficiency goals in mind.

This dissertation mainly focuses on seeking high accuracy and high efficiency

numerical techniques for solving PDEs over simple geometry domains with finite dif-

ference methods. For the purpose of high accuracy, Richardson extrapolation and

high-order discretization schemes, especially high-order compact (HOC) difference

schemes, are utilized. To obtain high efficiency, multiscale multigrid (MSMG) com-

putation, multiple coarse grid (MCG) computation and alternating direction implicit

(ADI) method are involved. The following parts introduce these numerical methods

and computational techniques.

1.1 Richardson Extrapolation Technique

Richardson extrapolation is a sequence acceleration method used to improve the rate

of convergence of a sequence, which was introduced by Lewis Fry Richardson in the

early of the 20th century [56]. In introductory courses of numerical methods, it is

taught as the basis of Romberg integration [11]. To increase the order of accuracy of

numerical approximation through Richardson extrapolation, the numerical approx-

imations using related discretization can be combined to remove the leading order

error term and thus obtain a higher-order numerical approximation.

2
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Assume U(h) is a numerical approximation of order p to an exact solution U∗.

The objective is to obtain the exact solution as h goes to 0. With the assumption,

the numerical approximation can be expanded as

U(h) = U∗ + Ahp +O(hp+1)

with p being some known constant, A being some other (usually unknown) expression

and independent of h, and O(hp+1) being a sum of terms of order p+1 and higher on

h. In order to remove the leading order error term Ahp and obtain a more accurate

approximation Ũ(h), consider another numerical approximation with discretization

size rh (r as a given refinement ratio and usually 0 < r < 1)

U(rh) = U∗ + Arphp +O(hp+1).

By multiplying U(h) by rp and subtracting off U(rh), the Richardson extrapolation

formula for the improved approximation Ũ(h) is

Ũ(h) =
rpU(h)− U(rh)

rp − 1
= U∗ +O(hp+1). (1.1)

If the original numerical scheme does not have an error term of the form hp+1, then

the order of accuracy of the extrapolated approximation Ũ(h) is based on the error

term of the next lowest order on h.

The quantity being approximated in the simple formula (1.1) can be anything,

such as an integral, a derivative, a solution to an ordinary differential equation or

a solution to a partial differential equation. It does not require knowledge of the

underlying methodology, except that the order of accuracy must be known. Just like

“black boxes” for many modern computational tools, Richardson extrapolation can

be viewed as a manipulation tool for the input or output of these black boxes without

interfering with the details of the implementation within the black box [9]. Therefore,

it is an efficient computational technique which requires minimal effort to increase the

accuracy. In regards to PDEs, Richardson extrapolation has been used to increase

the accuracy of their solutions in [47, 60, 57, 69, 79].
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1.2 High-Order Compact (HOC) Difference Schemes

Traditional finite difference schemes, such as the central difference scheme (CDS)

which computes approximate solutions with second-order accuracy, require very fine

meshes to achieve satisfactory solution accuracy. For large scale simulations and mod-

eling applications in many CSE applications, very fine meshes cause an extremely high

computational cost. In order to curtail the computational cost and to get acceptable

accuracy, large grid spaces with high-order (higher than two) difference schemes are

needed. Using straightforward central differences, higher-order accuracy requires a

larger stencil. This, however, may give rise to a problem at the points close to the

boundaries, and also increases the bandwidth of the coefficient matrix, which makes

fast direct solvers difficult to apply. Therefore, HOC finite difference schemes be-

come noticeable because they are able to offer highly accurate numerical solutions

on relatively coarser grids with greater computational efficiency. Here “compact”

means that these schemes only use the center node and the adjacent nodes in each

dimension. Although HOC difference schemes require more complicated developing

procedures for matrix coefficient computation, they usually generate linear systems

of much smaller size [1, 33].

For the development methods of HOC difference schemes, they can be classified

into two categories. One is known as implicit methods, such as [12, 43], which compute

the solution of the dependent variables and their first and second derivatives at the

same time. The major shortcoming of the implicit methods lies in high computational

cost, especially when the approximations of the first and second derivatives are not

needed for some applications. In addition, they are not stable for certain problems,

which are the computed solutions that may be oscillatory when a large mesh-size is

used [96]. Although using a finer mesh-size may avoid numerical oscillations, it is

contrary to the motivation of using high-order schemes. Another category is called

explicit methods, which compute the solution of the dependent variables directly

4



www.manaraa.com

to avoid redundant computation. Literature [66, 67] shows that explicit schemes

have better stability property and will suppress nonphysical oscillations. However,

compared with implicit compact schemes, high-order explicit compact schemes are

more complicated to develop [35, 94].

1.2.1 Fourth-order compact (FOC) difference schemes

In the past three decades, many fourth-order explicit compact difference schemes were

developed for 2D equations [32, 44, 65, 66, 93, 97] and 3D equations [2, 35, 36, 67, 88,

91, 94]. These fourth-order schemes not only provide high accuracy approximations

with good numerical stability [90], but also work very well with fast iterative solution

methods, e.g., multigrid methods [34, 84, 89, 95].

There are mainly two strategies to develop fourth-order compact (FOC) schemes

explicitly. One is based on the truncated Taylor series expansions, represented by

[2, 32]. Their procedures are based upon giving the approximate value of a function

at a mesh point as a linear combination of the analytic solutions of the differential

equation. The finite difference schemes are obtained by collocation over a set of mesh

points surrounding the given mesh point for which the difference formula is derived.

The process of simplification is straightforward but extremely tedious. Another tech-

nique to develop FOC schemes considers a particular equation and employs CDS

repeatedly. The discretization continues by expanding the leading truncation error

term until a desired order of approximation is reached. The representative methods

are from Spotz and Carey’s work [66, 67].

To illustrate the development process of the HOC scheme, we take a brief in-

troduction to the FOC difference scheme for solving a 1D Poisson equation of the

form

uxx = f(x), 0 ≤ x ≤ l, (1.2)

with suitable boundary conditions. A uniform grid with mesh-size ∆ = l/n is con-

5
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structed, where n is the number of intervals. f(x) is assumed to have the necessary

derivatives up to certain orders. We denote xj = j∆, uj = u(xj), and fj = f(xj),

where j = 0, 1, ..., n. We have the second-order central difference operator as

δ2xuj =
uj+1 − 2uj + uj−1

∆2
, j = 1, 2, ..., n− 1.

By using the Taylor series expansions, the second derivative uxx at a grid point j

can be approximated using the central difference operator as

uxx = δ2xuj −
∆2

12
u4
x +O(∆4). (1.3)

To get the fourth-order compact approximation, the term O(∆4) can be ignored. But,

we cannot drop the term ∆2

12
u4
x, unless it can be approximated further to fourth-order

accuracy. Since ∆2

12
u4
x has an ∆2 factor, the key issue is to approximate the term u4

x

to second-order accuracy.

we double differentiate Eq. (1.2) to get

u4
x = fxx. (1.4)

Applying the central difference operator on fxx, we have fxx = δ2xf +O(∆2). Hence,

Eq. (1.4) can be approximated to second-order accuracy as

u4
x = δ2xf +O(∆2). (1.5)

Substituting (1.5) into (1.3) yields a fourth-order compact approximation for the

second derivative

uxx = δ2xu−
∆x2

12
δ2xf +O(∆4). (1.6)

Hence, the fourth-order compact approximation scheme of the 1D Poisson equation

is

δ2xu−
∆x2

12
δ2xf = f +O(∆4). (1.7)

6
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1.2.2 Sixth-order compact (SOC) difference schemes

Recently, there has been growing interest in developing sixth-order schemes. By using

Taylor series expansion, Soptz and Carey [67] developed a compact scheme for the 3D

Poisson equation which can achieve sixth-order accuracy only when the derivatives

of source term can be determined analytically. Sutmann used Padé approximation

discussed by Lele [43] on the Taylor expansion for the discretized Laplace opera-

tor to develop sixth-order compact schemes for the 3D Poisson equation [70] and

the 3D Helmholtz equation [71]. Although the schemes need less grid points than

the straightforward expansion approach, they are not fully compact since other grid

points besides center and adjacent points are involved. Chu and Fan [12] proposed

a three point combined compact difference (CCD) scheme for solving 2D Stommel

Ocean model, which is a special convection-diffusion equation. Their scheme can

achieve sixth-order accuracy for the inner grid points and fifth-order accuracy for

the boundary grid points, but it is an implicit scheme which asks to compute the

dependent variables and their derivatives together, resulting in a triple-tridiagonal

system with high computational cost for solution. In addition, the CCD scheme has

a stability problem that, for certain problems with a large mesh-size, the computed

solution may be oscillatory [96]. There are other sixth-order schemes generated sim-

ilarly [53, 42, 77], but all of them share common weak points such as: (1) derivatives

of the source term appeared in the right-hand side which require analytical forms

or approximations for the derivatives with certain order accuracy; (2) non-compact

schemes which may cause problems at near-boundary points; (3) resulting complicated

linear systems which increase the difficulty of choosing effective iterative solvers. As

we know, there is no existing explicit sixth-order compact difference schemes on a

single scale grid [78].

In this dissertation, we aim to study using Richardson extrapolation for sixth-

order compact approximations. Although assumptions of smoothness and monotone

7
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truncation error convergence in the mesh-size are involved, using Richardson ex-

trapolation to reach sixth-order accuracy is more convenient than developing direct

discretizations [60]. We can avoid complicated stencils, wide bandwidth matrices,

and special considerations for near-boundary points, etc. In addition, highly efficient

solvers for the resulting large sparse linear systems can be easily applied in such sixth-

order methods. Sun and Zhang [69] first proposed to use Richardson extrapolation

to obtain sixth-order solutions. The basic idea is applying Richardson extrapolation

technique to the computed fourth-order solutions on two scale grids to remove fourth-

order leading error terms. As for most uniform FOC schemes, their truncation error

expressions do not have any fifth-order error term, thus the extrapolated solution can

reach the sixth-order accuracy.

For the purpose of illustration, consider the 1D Poisson equation (1.2). The

computational domain has uniform grids denoted by Ω. We compute a fourth-order

accurate solution u∆
j at a grid point j by using the FOC scheme (1.7) on Ω∆ with

mesh-size ∆. After changing the mesh-size to 2∆, we compute a similar fourth-order

approximate solution u2∆
j at a grid point j on Ω2∆. Using the general Richardson

extrapolation formula (1.1) and setting p = 4 and r = 1/2, a sixth-order solution ũ2∆

can be computed by

ũ2∆
j =

(1/2)4u2∆
j − u∆

2j

(1/2)4 − 1
=

(16u∆
2j − u2∆

j )

15
. (1.8)

Note that the sixth-order solution ũ2∆ is computed on the coarse grid Ω2∆. Since we

are interested in computing a sixth-order solution on the fine grid Ω∆, we inject ũ2∆

from Ω2∆ to the corresponding even grid points on Ω∆. Sixth-order solutions at odd

grid points on Ω∆ can be computed by using some appropriate interpolation. Fig.

1.1 illustrates this process.

1.3 Multiscale Multigrid (MSMG) Method

Multigrid methods. For solving the resulting linear systems from discretized PDEs,
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boundary
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Richardson Extrapolation

Coarse grid
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Coarse grid

Fine grid

Injection

Interpolation

Sixth order
solution
Fourth order
solution

Figure 1.1: Illustration of the Richardson extrapolation and interpolation process in
a 1D two-grid computation. Solution values at the boundary points are known.

multigrid methods are considered one of the most efficient contemporary iterative

methods. The convergence rate of multigrid methods is independent of the grid size

[4, 7]. Meanwhile, this approach often scales linearly with the number of unknowns.

In other words, the computational complexity of multigrid methods is O(n), where

n is the number of unknowns. In [29, 36, 86, 89, 93, 95], previous scholars discussed

various multigrid implementations with HOC schemes to solve 2D/3D Poisson and

convection-diffusion equations.

The multigrid methods fully use multiscale grids to overcome the smoothing prop-

erty of standard relaxation schemes and make the relaxation more effective. Due to

the smoothing property, the standard relaxation schemes, such as Jacobi and Gauss-

Seidel methods, can only effectively eliminate the oscillatory error components, and

begin to stall when the smooth error components become dominant. In order to re-

move all error components effectively, multiscale grids are used and thus give birth

to multigrid methods.

There are two strategies of utilizing multiscale grids to improve relaxation. One

is to use coarser grids to generate improved initial guesses for finer grids, which is

called nested iteration [7]. Obviously, relaxation on a coarse grid is less expensive

9
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Figure 1.2: Smooth error component on Ω∆ projected onto Ω2∆.

than on a fine grid because there are fewer unknowns to update. Although we obtain

some improvement from using the coarse grids in this way, smooth error components

still remain and the final iteration will stall. A second strategy focuses on removing

smooth error components by using different scale grids. There is an observation that

smooth error components look more oscillatory on a coarser grid, as in Fig. 1.2. Based

on the idea that the residual equation on the coarse grid has a similar structure as

the original problem on the fine grid, the residual is projected to the coarser grid and

solved there. This procedure is known as the correction scheme [7], which consists of

smoothing the error using a standard relaxation scheme (the smoother), restricting

the residual to the coarse grid, solving the residual equation on the coarse grid to

obtain an approximation of error correction, interpolating the error correction to the

fine grid, and finally adding the error correction into the current approximation. In

this process, the relaxation and error correction work together to remove both the

oscillatory and smooth error components.

In practice, the coarse grid has twice the mesh-size of the fine grid. In respect to

the intergrid transfers in the correction scheme, there are two classes of operations.

One is transferring the error approximation from the coarse grid to the fine grid, which

is generally called interpolation or prolongation. Interpolation is most effective when

10
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the error is smooth. This process provides a perfect complement to relaxation, which

is most effective for the oscillatory error. There are many interpolation methods that

could be used. Bilinear (or trilinear) interpolation is mainly used in this dissertation.

The other operation involves moving residual vectors from the fine grid to the coarse

grid, which is known as restriction. The most obvious restriction operator is injection.

In this dissertation, a more accurate operator, called full weighting [7], is used.

When the correction scheme is recursively applied to the residual equation on

the coarse grids, a standard multigrid method, known as V-cycle algorithm, is con-

structed. In a multigrid V (ν1, ν2)-cycle algorithm, we carry out ν1 relaxation sweeps

on a given grid before going to a coarser grid and ν2 relaxation sweeps after adding the

coarse grid correction to the current approximation. ν1 and ν2 are called presmooth-

ing sweeps and postsmoothing sweeps, respectively. Algorithm 1 gives the definition

of V-cycle scheme. The notation A∆u∆ = f∆ denotes the linear system to be solved.

I2∆∆ and I∆2∆ are the restriction and interpolation operators, respectively.

Algorithm 1 V (ν1, ν2)-cycle scheme (Recursive Definition)

1: procedure V ∆(v∆, f∆)
2: Relax ν1 times on A∆u∆ = f∆ with a given initial guess v∆.
3: if Ω∆ = coarsest grid then go to line 10.
4: else
5: f 2∆ ← I2∆∆ (f∆ − A∆v∆),
6: v2∆ ← 0,
7: v2∆ ← V 2∆(v2∆, f 2∆).
8: end if
9: Correct v∆ ← v∆ + I∆2∆v

2∆.
10: Relax ν2 times on A∆u∆ = f∆ with initial guess v∆.
11: end procedure

There are two other kinds of multigrid schemes. One is called W-cycle, which

is the multigrid method with two corrections. The other one is called full multigrid

(FMG) scheme, in which each V-cycle is preceded by a coarse-grid V-cycle designed

to provide the best initial guess possible. The FMG scheme fully uses the multiscale

grids and can be viewed as the combination of nested iteration and recursive correction

11
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Figure 1.3: Illustration of three different multigrid schemes on four levels: (a) V-cycle
(b) W-cycle (c) FMG scheme.

scheme. Fig. 1.3 illustrates the structure of three multigrid schemes.

Multiscale multigrid (MSMG) method. Although we have high-order discretiza-

tion methods, such as HOC schemes, as well as fast iterative methods, such as multi-

grid methods, the studies on the discretization process and the linear system solvers

are generally carried on by two different groups of people with their own goals in

mind. People studying high accuracy discretization schemes may not care about how

the resulting linear systems will be solved. While, people developing efficient linear

system solvers may pay little attention to the sources of these linear systems. The

MSMG method, first proposed in [79], aims to accelerate the linear system compu-
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tation by using multigrid methods and to obtain a higher-order accurate solution by

using a multiscale strategy to extrapolate on two lower-order solutions computed from

different level discretizations. The most important feature of the MSMG method is

the seamless integration of multiscale and multigrid computation. As a result, the

high accuracy solution and high speed computation are achieved within the same

framework. On one hand, the MSMG method offers the convergence rate that is

independent of the grid size, a feature that is presented in multigrid methods. On the

other hand, it utilizes different scale grids involved in the sixth-order approximation

to provide better initial guesses and thus accelerates the convergence rate.

In Section 1.2.2, a class of Richardson extrapolation-based sixth-order methods

is described. The MSMG method is particularly designed for this kind of compu-

tation. Richardson extrapolation asks for using two different discretized grids. It

would not be cost-effective to construct a coarse grid exclusively for this purpose.

Fortunately, different scale coarse grids are generated when using multigrid methods

to solve the discretized equations. The MSMG method skillfully fuses the Richardson

extrapolation procedure and multigrid methods for computing higher-order solutions

of PDEs. The salient superiority of this method is to efficiently utilize the multilevel

grids to accelerate the iterative process of the linear system and to enhance the order

of accuracy of the computed solution simultaneously, not separately.

In recent years, the MSMG method has been implemented and applied to solve

various PDEs, which is shown to be very efficient and stable [80, 81]. The MSMG

method is structurally similar to the FMG scheme, but the computation does not

start from the coarsest grid, as in Fig. 1.4. It first computes on Ω4∆, then goes to

compute on Ω2∆ and Ω∆. The solutions from the coarser grids are used as the initial

guesses for the finer grids. The MSMG method uses the solution u4∆ as the initial

guess to compute the solution u2∆ on Ω2∆, and uses the solution u2∆ as the initial

guess to compute for u∆ on Ω∆.

13
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Figure 1.4: Illustration of the standard multiscale multigrid method.

1.4 Multiple Coarse Grid (MCG) Computation

The idea of MCG computation can be traced back to the parallel superconvergent

multigrid method [24]. The superconvergent multigrid method uses multiple coarse

grids to realize parallelization by solving many coarse scale problems simultaneously

and to speed up convergence rates by generating a better correction for the fine grid

solution than the correction from a single coarse grid. The appearance of multiple

coarse grids is from the observation that for a 1D fine grid there are two kinds of grid

points - the even fine grid points and the odd fine grid points, which construct two

coarse grids, as in Fig. 1.5. In Fig. 1.5, the fine grid on Ω∆ is coarsened into two

coarse grids on Ω1
2∆ and Ω2

2∆. The coarse grid 1 is composed by even fine grid points

and boundary points, while the coarse grid 2 is composed by odd fine grid points and

boundary points.

In general, for a d dimensional problem, the fine grid can easily be coarsened into

2d coarse grids. For instance, for a 2D fine grid, there are four kinds of grid points

which generate four coarse grids. For a 3D fine grid, eight kinds of fine grid points

can lead to eight coarse grids.
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Figure 1.5: Illustration of the multiple coarse grids for 1D problem.

1.5 Alternating Direction Implicit (ADI) Method

Alternating direction implicit methods [17, 18, 55, 72] are popular non-iterative meth-

ods for solving 2D/3D parabolic differential equations. The main idea is to reduce

multi-dimensional problems to a series of one-dimensional problems and solving a

sequence of tridiagonal linear systems. Hence, the overall computation is simple and

relatively fast. Among various ADI schemes, we consider the Peaceman-Rachford

ADI scheme [55] in this dissertation.

Consider a 2D heat equation on the unit square

ut = uxx + uyy + f(x, y, t), (x, y) ∈ (0, 1)× (0, 1), t ∈ (0, T ], (1.9)

with Dirichlet boundary and given initial conditions. In order to solve Eq. (1.9),

a uniform grid with mesh-sizes h in both x and y directions is constructed. The

temporal domain is discretized by time step size ∆t. The approximate solution at

(xi, yj, tn) is denoted by un
i,j.

Using the 2D Crank-Nicolson scheme [72] to discretize (1.9) in time gives

un+1
i,j = un

i,j +
∆t

2
[(uxx + uyy)

n+1
i,j + (uxx + uyy)

n
i,j + fn+1

i,j + fn
i,j] +O(∆t3). (1.10)

We rewrite (1.10) as

un+1
i,j −

∆t

2
(uxx + uyy)

n+1
i,j = un

i,j +
∆t

2
(uxx + uyy)

n
i,j +

∆t

2
(fn+1

i,j + fn
i,j). (1.11)
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Figure 1.6: Matrix structure for 2D Crank-Nicolson method.

By using the CDS to approximate the spatial derivatives in (1.11), we obtain

un+1
i,j −

∆t

2h2
(un+1

i−1,j + un+1
i,j−1 − 4un+1

i,j + un+1
i,j+1 + un+1

i+1,j)

= un
i,j +

∆t

2h2
(un

i−1,j + un
i,j−1 − 4un

i,j + un
i,j+1 + un

i+1,j) +
∆t

2
(fn+1

i,j + fn
i,j). (1.12)

The linear system from (1.12) has the structure displayed in Fig. 1.6, where Nx

is the number of grid intervals along the x direction and Ny is the number of grid

intervals along the y direction. This coefficient matrix is a large sparse matrix with

high degree and consists of five nonzero bands. Neither direct elimination nor sparse

LU composition can be applied. However, ADI methods are able to convert the

current system to a system of two sets of equations, each of which involves only one

spatial direction and requires solution of only tridiagonal systems. Hence, the new

system requires only O(N) (N = Nx × Ny) arithmetic operations per time step, in

contrast to the O(N3) required by direct Gaussian elimination applied to the entire

system [51].

To derive an ADI scheme, the approximation (1.12) can be rearranged and repre-
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sented as

[I − ∆t

2
(Ax + Ay)]u

n+1 = [I +
∆t

2
(Ax + Ay)]u

n +
∆t

2
(fn+1 + fn), (1.13)

where Ax and Ay are tridiagonal matrices.

In (1.13), the left-hand side matrix can be approximately factored as

(I − ∆t

2
Ax)(I −

∆t

2
Ay) = I − ∆t

2
(Ax + Ay) +

∆t2

4
AxAy, (1.14)

and similarly for the right-hand side,

(I +
∆t

2
Ax)(I +

∆t

2
Ay) = I +

∆t

2
(Ax + Ay) +

∆t2

4
AxAy. (1.15)

Notice that each of the two factored matrices on the left of these expressions is

tridiagonal. In addition, their products are within O(∆t2) of the original unfactored

matrices.

Substitute Eqs. (1.14) and (1.15) into (1.13) and obtain

(I−∆t

2
Ax)(I−

∆t

2
Ay)u

n+1 = (I+
∆t

2
Ax)(I+

∆t

2
Ay)u

n+
∆t

2
(fn+1+fn)+

t2

4
(un+1−un).

(1.16)

If u(x, y, t) is sufficiently smooth, we have

un+1
i,j − un

i,j = O(∆t)

for any (i, j).

Hence, the factorization

(I − ∆t

2
Ax)(I −

∆t

2
Ay)u

n+1 = (I +
∆t

2
Ax)(I +

∆t

2
Ay)u

n +
∆t

2
(fn+1 + fn) (1.17)

is with O(∆t3) of the original 2D Crank-Nicolson scheme (1.10).

Splitting (1.17) into two equations gives

(I − ∆t

2
Ax)u

n+1∗ = (I +
∆t

2
Ay)u

n +
∆t

2
fn, (1.18)

(I − ∆t

2
Ay)u

n+1 = (I +
∆t

2
Ax)u

n+1∗ +
∆t

2
fn+1. (1.19)

Thus, we calculate the advanced time step values in two consecutive steps. The first

involves only x derivatives, while the second involves only y derivatives.
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1.6 Organization

This dissertation is composed of seven chapters. The remainder is organized as fol-

lows:

• In the existing MSMG method, there is a computational efficiency issue caused

by an iterative refinement procedure on the fine grid. In Chapter 2, a direct

solution based on multiple coarse grids is proposed to replace the iterative re-

finement procedure for computing fine grid sixth-order solutions. An MSMG

method with MCG updating strategy is presented and applied to solve 2D Pois-

son and convection-diffusion equations. Numerical investigations show that the

MCG updating strategy is more efficient and scalable than the iterative refine-

ment procedure for sixth-order accuracy computation.

• In Chapter 3, an improved MSMG method with MCG updating strategy for 3D

convection-diffusion equations is presented. The new MCG updating strategy is

used to replace the iterative refinement procedure in the existing MSMGmethod

for 3D steady-state equations to obtain higher-order solutions on the fine grid.

Since the proposed method needs an FOC scheme with unequal mesh-sizes, a

19-point FOC difference scheme with unequal mesh-size discretization is given

for the 3D convection-diffusion equation. Numerical experiments are carried

out to compare the computed accuracy and the computational efficiency of the

MCG updating strategy against the iterative refinement procedure in computing

sixth-order solutions with the MSMG method.

• Another Richardson extrapolation-based sixth-order solution for steady-state

PDEs is described in Chapter 4. Completed Richardson extrapolation tech-

nique is used to obtain a sixth-order solution on the entire fine grid. Numerical

experiments are conducted to test its high accuracy and high efficiency.
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• Extrapolated sixth-order coarse grid solutions can be injected into the fine grid

and make partial fine grid points obtain sixth-order solutions, but other tech-

niques are needed to compute sixth-order solutions for the remaining fine grid

points. There are three different techniques (iterative refinement procedure

with operator based interpolation, multiple coarse grid updating strategy, and

completed Richardson extrapolation), which lead to three kinds of Richardson

extrapolation-based sixth-order methods. Chapter 5 analyzes the truncation

errors from these three different methods respectively. Numerical comparisons

on several test problems are also provided.

• In Chapter 6, a higher-order ADI method with completed Richardson extrapo-

lation is proposed for solving unsteady 2D convection-diffusion equations. The

method is sixth-order accuracy in space and third-order accuracy in time. Com-

pleted Richardson extrapolation is used to improve the accuracy of the solution

in spatial and temporal domains simultaneously. A stability analysis is given to

discuss the effects of Richardson extrapolation on solution stability. Numerical

experiments are conducted to test the proposed method and to compare it with

Karaa-Zhang’s high-order ADI method.

• In Chapter 7, I summarize contributions of this dissertation and outlook for

possible future research work.

Copyright c⃝ Ruxin Dai 2014
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2 Sixth-Order Solution with Multiscale Multigrid Method and Multiple
Coarse Grid Updating Strategy for 2D Steady-State Equations

2.1 Introduction

This chapter discusses using the Richardson extrapolation technique, multiscale multi-

grid (MSMG) method and multiple coarse grid (MCG) computation for computing

sixth-order solutions of 2D Poisson and convection-diffusion equations.

We first consider a 2D Poisson equation of the form

uxx(x, y) + uyy(x, y) = f(x, y), (x, y) ∈ Ω, (2.1)

where Ω is a rectangular domain, with suitable boundary conditions defined on ∂Ω.

The solution u(x, y) and the forcing function f(x, y) are assumed to be sufficiently

smooth and have required continuous partial derivatives.

Recently, Zhang et al. proposed a series of explicit methods for sixth-order com-

pact approximations by using Richardson extrapolation [69, 79, 80, 81]. Among these

methods, the most efficient one is the MSMG method, which incorporates the sixth-

order explicit compact computing strategy and multigrid solution idea [79]. In the

existing MSMG computational framework. Richardson extrapolation is applied on

two fourth-order computed solutions from two different scale uniform grids – Ω∆

with mesh-size ∆ and Ω2∆ with mesh-size 2∆ – to obtain a sixth-order solution on

the standard coarse grid Ω2∆. The extrapolated solution is directly interpolated (in-

jected) from the standard coarse grid to the fine grid, which makes the (even, even)

fine grid points obtain sixth-order solutions, as in Fig. 2.1. In Fig. 2.1, the grid points

marked in red have sixth-order solutions, while the grid points marked in black have

fourth-order solutions. Since the goal is to obtain a sixth-order solution on the fine

grid Ω∆, Wang [78] used an operator based interpolation scheme to iteratively up-

date the solution of black fine grid points. Fig. 2.2 shows the updating process of one

interpolation iteration. However, this process is an iterative refinement procedure,
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which is similar to basic iterative methods like Gauss-Seidel [61], and the convergence

rate is usually slow. As the iterative refinement procedure is performed on the fine

grid, it may take a number of iterations to converge. Thus, the computational cost

becomes expensive. In this chapter, we want to reduce the computational cost by

using an alternative method to directly calculate sixth-order solutions for all fine grid

points. An updating strategy based on multiple coarse grids is developed and used to

accelerate the MSMG computation by eliminating the iterative refinement procedure.
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Figure 2.1: Injection from the standard coarse grid to the fine grid.

2.2 FOC Scheme with Unequal Mesh-Size Discretization for the 2D Pois-
son Equation

The Richardson extrapolation-based sixth-order methods involve fourth-order solu-

tions on two different scale grids. In this section, we first introduce the fourth-order

compact (FOC) scheme for the 2D Poisson equation. The basic idea stems from

Zhang’s previous work [93].

In order to discretize Eq. (2.1), consider a rectangular domain Ω = [0, Lx]× [0, Ly]

with mesh-sizes ∆x = Lx/Nx and ∆y = Ly/Ny in the x and y coordinate directions,

respectively. Here Nx and Ny are the number of uniform intervals in the x and y

coordinate directions, respectively. The mesh points are (xi, yj) with xi = i∆x and

yj = j∆y, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. In the following, we may also use the index pair

(i, j) to represent the grid point (xi, yj).
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Figure 2.2: Operator based interpolation scheme for a 5× 5 fine grid.

The standard second-order central difference operators defined at a grid point

(xi, yj) can be written as

δ2xui,j =
ui+1,j − 2ui,j + ui−1,j

∆x2
, δ2yui,j =

ui,j+1 − 2ui,j + ui,j−1

∆y2
.

Using Taylor series expansions at the grid point (xi, yj), we have

δ2xui,j = uxx +
∆x2

12
u4
x +

∆x4

360
u6
x +O(∆x6) (2.2)

and

δ2yui,j = uyy +
∆y2

12
u4
y +

∆y4

360
u6
y +O(∆y6). (2.3)

Recall the FOC scheme for the 1D Poisson equation introduced in Section 1.2.1,

we rewrite (1.7) as

δ2xu = (1 +
∆x2

12
δ2x)f +O(∆4), (2.4)
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which can be formulated symbolically as

(1 +
∆x2

12
δ2x)

−1δ2xu = f +O(∆4), (2.5)

where the operator (1 + ∆x2

12
δ2x)

−1 has symbolic meaning only.

We similarly have the symbolic fourth-order compact approximation operator for

the y variable as

(1 +
∆y2

12
δ2y)

−1δ2yu = f +O(∆y4). (2.6)

We apply (2.5) and (2.6) to the second derivatives uxx and uyy in Eq. (2.1),

respectively. This yields symbolically

(1 +
∆x2

12
δ2x)

−1δ2xu+ (1 +
∆y2

12
δ2y)

−1δ2yu = f +O(∆4), (2.7)

where O(∆4) denotes the truncated terms in the order of O(∆x4 + ∆y4). Applying

the symbolic operators and absorbing the O(∆x2 ·∆y2) term into the O(∆4) generates

(1 +
∆y2

12
δ2y)δ

2
xu+ (1 +

∆x2

12
δ2x)δ

2
yu = (1 +

∆x2

12
δ2x)(1 +

∆y2

12
δ2y)f +O(∆4)

= [1 +
1

12
(∆x2δ2x +∆y2δ2y)]f +O(∆4).

After some rearrangement and dropping the O(∆4) term, the general FOC scheme

for the 2D Poisson equation is given by

(δ2x + δ2y)u+
1

12
(∆x2 +∆y2)δ2xδ

2
yu = f +

1

12
(∆x2δ2x +∆y2δ2y)f. (2.8)

If we denote the mesh aspect ratio γ = ∆x/∆y, (2.8) changes into the following form

with a 9-point computational stencil [93]

aui,j + b(ui+1,j + ui−1,j) + c(ui,j+1 + ui,j−1)
+d(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)

= ∆x2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1),

(2.9)

where the coefficients are

a = 10(1 + γ2), b = −5 + γ2, c = −5γ2 + 1, d = −(1 + γ2)/2.
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Eq. (2.9) can be viewed as the general FOC scheme for the 2D Poisson equation

on a rectangular domain. In a special case of ∆x = ∆y = ∆, Eq. (2.9) can be written

as

ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 + 4(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 20ui,j

=
∆2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1). (2.10)

2.3 Richardson Extrapolation-based Sixth-Order Solution with MSMG
Method and MCG Updating Strategy for the 2D Poisson Equation

2.3.1 Improving solution accuracy by Richardson extrapolation in 2D

The general Richardson extrapolation can be written as

ũ2∆
i,j =

(2pu∆
2i,2j − u2∆

i,j )

2p − 1
, (2.11)

where p is the order of accuracy before the extrapolation, and the order of accuracy

will be increased to p+ 2 after the extrapolation [6, 56].

Consider a computational domain Ω discretized by uniform 2D grids. By using the

FOC scheme (2.10), we compute fourth-order solutions u∆ on the Ω∆ grid with mesh-

size ∆ and u2∆ on the Ω2∆ grid with mesh-size 2∆, respectively. Then, the sixth-order

solution on the Ω2∆ grid can be calculated by the Richardson extrapolation formula

as

ũ2∆
i,j =

(16u∆
2i,2j − u2∆

i,j )

15
. (2.12)

2.3.2 MCG updating strategy for 2D problems

Since our ultimate goal is to obtain a sixth-order solution on the fine grid Ω∆, the

sixth-order solution on the coarse grid Ω2∆ can be injected into the fine grid and make

the (even, even) fine grid points obtain sixth-order solutions. Unlike Wang’s method

[79] using an operator based interpolation scheme on the fine grid to asymptotically

approach sixth-order solutions for the remaining fine grid points, a direct calculation

strategy is proposed.
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The new strategy is inspired by the MCG computation introduced in Section

1.4. Fig. 2.3 illustrates that four coarse grids can be generated from a 2D fine

grid. The (odd, odd) coarse grid consists of (odd, odd) fine grid points (green-colored);

the (odd, even) coarse grid consists of (odd, even) fine grid points (black-colored);

the (even, odd) coarse grid consists of (even, odd) fine grid points (blue-colored); the

(even, even) coarse grid is the standard coarse grid, which consists of (even, even)

fine grid points (red-colored). In addition, all boundary points are marked in red.

In order to compute sixth-order solutions for (odd, even) fine grid points, we create

an X-odd grid view composed of (even, even) and (odd, even) fine grid points, as in

Fig. 2.4(a). It looks similar to a combination of the (even, even) coarse grid and the

(odd, even) coarse grid from Fig. 2.3. The reason for calling “grid view” is that all

the following computations can be conducted on the fine grid and there is no need to

build the X-odd grid physically.

The X-odd grid view is a view of unequal mesh-size grid with mesh-sizes ∆ and

2∆ in the x and y coordinate directions, respectively. In Figure 2.4(a), red-colored

(even, even) fine grid points and boundary points have sixth-order solutions, while

black-colored (odd, even) fine grid points have computed fourth-order solutions. The

black points form vertical lines. Therefore, we can perform a tridiagonal solver in the

y direction with x = odd to solve all black-colored points line by line and make all

(odd, even) fine grid points obtain sixth-order solutions. Next, we will construct the

tridiagonal systems from Eq. (2.9).

Assume that the grid points are ordered lexicographically, i.e., first from left to

right along the x direction then from bottom to top along the y direction. The coef-

ficient matrix of the FOC difference scheme with this ordering is a block tridiagonal

matrix of block order Ny/2 [93], (the order of the coefficient matrix A is Nx ×Ny/2)

A = diag[A1, A0, A1], (2.13)
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Figure 2.3: Illustration of the multiple coarse grids for 2D problem.
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(a) X-odd grid view:
(even,even) coarse grid +
(odd,even) coarse grid.
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(b) Y-odd grid view:
(even,even) coarse grid +
(even,odd) coarse grid.
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(c) The fine grid after X-odd
grid view and Y-odd grid view
computation.

Figure 2.4: Illustration of the MCG updating strategy in 2D.

where

A0 = diag[c, a, c], A1 = diag[d, b, d] (2.14)

are symmetric tridiagonal submatrices of order Nx. Here a, b, c, d are the coefficients

defined in Eq. (2.9). They represent the submatrix of each grid line along the y

direction. The grid points on the lines i = 0, 2, 4, ..., Nx in the X-odd grid view have

at least sixth-order solutions. Thus, sixth-order solutions at (odd, even) fine grid

points can be computed on the vertical lines with i = 1, 3, 5, ..., Nx − 1 by solving

A0ui = Fi − A1(ui−1 + ui+1), (2.15)

where ui is part of the solution vector representing the grid points on the ith line,

and Fi is the corresponding part of the right-hand side vector from Eq. (2.9).

Similarly, we create a Y-odd grid view composed of (even, even) and (even, odd)

fine grid points, as in Figure 2.4(b). It looks similar to a combination of the (even, even)

coarse grid and the (even, odd) coarse grid from Fig. 2.3. The Y-odd grid view is

virtual too, and all calculations are on the fine grid.

The Y-odd grid view is a view of unequal mesh-size grid with mesh-sizes 2∆ and

∆ in the x and y coordinate directions, respectively. In Figure 2.4(b), red-colored

(even, even) fine grid points and boundary points have sixth-order solutions, while
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blue-colored (even, odd) fine grid points have computed fourth-order solutions. The

blue points form horizontal lines. Hence, we can similarly perform a tridiagonal solver

in the x direction with y = odd to solve all blue-colored points line by line and make

them obtain sixth-order solutions. In the following, we discuss how to build the

tridiagonal systems from Eq. (2.9).

Let us change the order of the grid points, i.e., first from bottom to top along the

y direction then from left to right along the x direction. The coefficient matrix of the

FOC difference scheme with this order is as a block tridiagonal matrix of block order

Nx/2, (the order of the coefficient matrix B is Nx/2×Ny)

B = diag[B1, B0, B1], (2.16)

where

B0 = diag[b, a, b], B1 = diag[d, c, d] (2.17)

are symmetric tridiagonal submatrices of order Ny. Here a, b, c, d are also the coef-

ficients defined in Eq. (2.9). They represent the submatrix of each grid line along

the x direction. The grid points on the lines j = 0, 2, 4, ..., Ny in the Y-odd grid view

have at least sixth-order solutions. Thus, sixth-order solutions at (even, odd) fine grid

points can be computed on the horizontal lines with j = 1, 3, 5, ..., Ny − 1 by

B0uj = Fj −B1(uj−1 + uj+1), (2.18)

where uj is part of the solution vector representing the grid points on the jth line,

and Fj is the corresponding part of the right-hand side vector from Eq. (2.9).

By now, the (even, even), (odd, even) and (even, odd) fine grid points have sixth-

order solutions. As for the (even, even) fine grid points, their sixth-order solutions

are interpolated from the standard coarse grid directly. As for the (odd, even) and

(even, odd) fine grid points, their sixth-order solutions are solved from the X-odd

and Y-odd grid views, respectively. Because the involved extrapolated sixth-order
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solution is on the coarse grid, the computed sixth-order solution for fine grid points

has truncation error O((2∆)6), not O((∆)6).

In Figure 2.4(c), the color red is used to denote the grid points with sixth-order

solution. Only the (odd, odd) fine grid points in green still have fourth-order solutions.

Since every green-colored point is immediately surrounded by red-colored points, some

suitable interpolation can be used to compute sixth-order solutions for (odd, odd) fine

grid points. We simply apply a one step operator based interpolation to update the

solution of every (odd, odd) fine grid point by

ũi,j = −
1

a
[Fi,j − b(ui+1,j + ui−1,j)− c(ui,j+1 + ui,j−1)

− d(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)], (2.19)

where a, b, c and d have the same definition as in the FOC scheme (2.9) and Fi,j

represents the right-hand side part of Eq. (2.9). Since all grid points in the right-hand

side have approximate solutions with sixth-order accuracy, ũi,j now has a sixth-order

solution.

2.3.3 MSMG method with Richardson extrapolation and MCG updating
strategy for the 2D Poisson equation

We use the MCG updating strategy to replace the iterative refinement procedure to

accelerate the MSMG computation. Algorithm 2 gives the MSMG method with the

MCG updating strategy and Richardson extrapolation technique for computing sixth-

order solutions of the 2D Poisson equation. It is easy to use the following algorithm to

compute sixth-order solutions for other 2D steady-state equations. The changes need

to make are using an FOC scheme for the specific equation and generating appropriate

tridiagonal systems and operator based interpolation from the FOC schemes with

unequal mesh-size discretization.

The notation um∆ represents the computed fourth-order solution on the uniform

grid with mesh-size m∆. ũm∆,n∆ denotes the computed sixth-order solution on the
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grid with unequal mesh-sizes m∆ and n∆ in the x and y directions, respectively. ũm∆

denotes the computed sixth-order solution on the uniform grid with mesh-size m∆.

Ωm∆ represents the computational space discretized by a uniform grid with mesh-size

m∆.

Algorithm 2 Sixth-order solution computation for the 2D Poisson equation using
MSMG method with MCG updating strategy and Richardson extrapolation

1. Use the uniform FOC scheme (2.10) and MSMGmethod to compute fourth-order
solutions u2∆ ∈ Ω2∆ and u∆ ∈ Ω∆.
2. Compute sixth-order solutions for (even, even) fine grid points on Ω∆.
For every inner grid point on Ω2∆, from u2∆i,j ∈ Ω2∆ and u∆2i,2j ∈ Ω∆, apply Richardson

extrapolation using (2.12) to calculate ũ2∆i,j ∈ Ω2∆, then use direct interpolation to obtain

ũ∆2i,2j ∈ Ω∆.

3. Compute sixth-order solutions for (odd, even) fine grid points on Ω∆.
Use all (even, even) fine grid points with ũ∆2i,2j ∈ Ω∆ and all (odd, even) fine grid points

with u∆2i+1,2j ∈ Ω∆ to form an X-odd grid view.

From the X-odd grid view, solve Nx/2 y direction tridiagonal systems using (2.15) on Ω∆

to calculate ũ∆,2∆
2i+1,2j ∈ Ω∆.

4. Compute sixth-order solutions for (even, odd) fine grid points on Ω∆.
Use all (even, even) fine grid points with ũ∆2i,2j ∈ Ω∆ and all (even, odd) fine grid points

with u∆2i,2j+1 ∈ Ω∆ to form a Y-odd grid view.

From the Y-odd grid view, solve Ny/2 x direction tridiagonal systems using (2.18) on Ω∆

to calculate ũ2∆,∆
2i,2j+1 ∈ Ω∆.

5. Compute sixth-order solutions for (odd, odd) fine grid points on Ω∆.
For every (odd, odd) fine grid point with u∆2i+1,2j+1 ∈ Ω∆, perform one step operator

based interpolation on Ω∆ using Eq. (2.19) to obtain ũ∆2i+1,2j+1 ∈ Ω∆.

Comparing the improved MSMG (MSMG-MCG) method with the existing MSMG

(MSMG-Iter) method [79], the difference lies in the fine grid updating process, which

aims to improve the solution accuracy of (odd, even), (even, odd) and (odd, odd) fine

grid points. In the MSMG-MCG method, tridiagonal systems corresponding to X-odd

and Y-odd grid views need to be generated and solved to get sixth-order solutions for

(odd, even) and (even, odd) fine grid points. Then, a one step interpolation is applied

to compute a sixth-order solution for every (odd, odd) fine grid point. However, in

the MSMG-Iter method, the operator based interpolation is used to update three

groups of grid points iteratively. In the following part, we analyze and compare the
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computational cost of these two updating processes, respectively.

Assume Nx = Ny = n on the finest grid and the total number of fine grid points

N = n ∗n. In both methods, N/4 fine grid points achieve sixth-order solutions by in-

jecting from the extrapolated coarse grid points. We only need to compare the cost of

updating the remaining 3N/4 fine grid points by using the MCG updating strategy or

the iterative refinement procedure. One arithmetic operation (i.e., addition, subtrac-

tion, multiplication, and division) between two floating points is counted as one unit

of work. Our source code shows: generating a tridiagonal coefficient matrix needs 18

units of work; solving a tridiagonal system with n unknowns needs 10n − 21 units

of work; conducting one operator based interpolation needs 17 units of work. Tables

2.1 and 2.2 list the main costs of updating (odd, even), (even, odd) and (odd, odd) fine

grid points in the MCG updating strategy and the iterative refinement procedure,

respectively.

In Table 2.1, the total cost of the fine grid updating process in the MCG updating

strategy is 37
4
n2 − 3n. In Table 2.2, the total cost of the fine grid updating process

in the iterative refinement procedure is k × (51
4
n2 − 17n), where k is the number of

iterative refinement steps. If set n > 3, then 37
4
n2− 3n < 51

4
n2− 17n. This inequality

shows that the computational cost of the MCG updating strategy is less than that of

one iterative refinement step in the iterative refinement procedure when the number

of intervals on the fine grid is larger than 3.

2.4 Extension to the 2D Convection-Diffusion Equation

When the MSMG-MCGmethod is applied to solve a 2D convection-diffusion equation,

a 9-point FOC scheme with unequal mesh-size discretization for the 2D convection-

diffusion equation is needed. We consider the 2D convection-diffusion equation of the

form

uxx(x, y)+uyy(x, y)+p(x, y)ux(x, y)+q(x, y)uy(x, y) = f(x, y), (x, y) ∈ Ω, (2.20)

31



www.manaraa.com

Table 2.1: Computational cost of the fine grid updating process with the MCG up-
dating strategy.

Operation Cost
compute (odd,even) fine grid points
for line i = 1, 3, ..., Nx − 1, n

2
× (18 + (10n

2
− 21))

generate and solve the tridiagonal system = 5
2
n2 − 3

2
n

compute (even,odd) fine grid points
for line j = 1, 3, ..., Ny − 1, n

2
× (18 + (10n

2
− 21))

generate and solve the tridiagonal system = 5
2
n2 − 3

2
n

compute (odd,odd) fine grid points
for ui,j with i = 1, 3, ..., Nx − 1 and j = 1, 3, ..., Ny − 1, n

2
× n

2
× 17

conduct one step operator based interpolation =17
4
n2

Total cost: 37
4
n2 − 3n

Table 2.2: Computational cost of the fine grid updating process with the iterative
refinement procedure.

Operation Cost
for k = 1, 2, 3, ...
update (odd,odd) fine grid points
for ui,j with i = 1, 3, ..., Nx − 1 and j = 1, 3, ..., Ny − 1, n

2
× n

2
× 17

conduct operator based interpolation =17
4
n2

update (odd,even) fine grid points
for ui,j with i = 1, 3, ..., Nx − 1 and j = 2, 4, ..., Ny − 2, n

2
× (n

2
− 1)× 17

conduct operator based interpolation =17
4
n2 − 17

2
n

update (even,odd) fine grid points
for ui,j with i = 2, 4, ..., Nx − 2 and j = 1, 3, ..., Ny − 1, (n

2
− 1)× n

2
× 17

conduct operator based interpolation =17
4
n2 − 17

2
n

check the L2-norm. If converged, exit the iteration and stop.
Total cost: (k is the number of iterative refinements) k × (51

4
n2 − 17n)
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where Ω is a rectangular domain with appropriate boundary conditions defined on

∂Ω. We assume that the coefficients p(x, y) and q(x, y) are sufficiently smooth on Ω.

u0 is used to denote the approximate value of u(x, y) at a grid point (x, y). The

approximate values of the eight immediate neighboring points are denoted by ui,

i = 1, 2, ..., 8. The 9-point compact grid points are labeled as u6 u2 u5

u3 u0 u1

u7 u4 u8

 .

We use pi, qi and fi (i = 0, 1, .., 4) to denote the function values at the corresponding

grid points.

By using the symbolic computation package from Maple, the 9-point general FOC

scheme with unequal mesh-sizes ∆x and ∆y for Eq. (2.20) at the mesh point (x, y)

is obtained as [95]
8∑

j=0

αjuj = F. (2.21)

In a special case of ∆x = ∆y, the scheme is the same as Gupta’s 9-point FOC scheme

[32]. In general case, if we denote the mesh aspect ratio λ = ∆y/∆x, the coefficients

αj and the right-hand side F are given in Appendix A.

To compute a sixth-order solution for Eq. (2.20), we first compute fourth-order

solutions on Ω∆ and Ω2∆ by using Eq. (2.21). Next, Richardson extrapolation and

direct interpolation are used to obtain sixth-order solutions of (even, even) fine grid

points. Then, by setting different λs, Eq. (2.21) can be used to build tridiagonal

systems from X-odd and Y-odd grid views for computing sixth-order solutions for

(odd, even) and (even, odd) fine grid points. Finally, a one step operator based inter-

polation is generated from Eq. (2.21) for updating (odd, odd) fine grid points.

2.5 Numerical Results

In this section, we compare the MSMG-MCG method with the MSMG-Iter method.

The codes were written in Fortran 77 programming language and run on one login
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node of Lipscomb HPC Cluster at the University of Kentucky. The node has Dual

Intel E5-2670 8 Core (totally 16 cores) with 2.6GHz and 128 GB RAM.

We used the standard V(1,1)-Cycle in the MSMG computation. The initial guess

for the V-Cycle on Ω4∆ was the zero vector. The multigrid V-Cycles on Ω2∆ and Ω∆

stopped when the L2-norm of the difference of the successive solutions was reduced by

a factor of 1010. The iterative refinement procedure in the MSMG-Iter method was

terminated when the L2-norm of the correction vector of the approximate solution

was less than 10−10. The upper limit for the number of iterations in the MSMG-Iter

method was set as 10000. The errors reported were the maximum absolute errors

over Ω∆.

We also computed an estimated order of accuracy for every computing strategy

with different mesh-sizes. Consider two mesh-sizes ∆H and ∆h on ΩH and Ωh, re-

spectively. The maximum absolute errors of these two grids are denoted as ErrorH

and Errorh. If we set the order of accuracy as m, then we have the following form

(∆H)m

(∆h)m
=

ErrorH

Errorh
.

So, the order of accuracy m can be computed as

m =
log ErrorH

Errorh

log ∆H

∆h

. (2.22)

The order of accuracy is formally defined when the mesh-size approaches zero. There-

fore, when the mesh-size is relatively large, the discretization scheme may not achieve

its formal order of accuracy.

2.5.1 Test problem 1

We considered a 2D Poisson equation as follows

uxx(x, y) + uyy(x, y) = −2π2 sin(πx) cos(πy), (x, y) ∈ Ω = [0, 4]× [0, 4], (2.23)

which has the Dirichlet boundary condition. The analytical solution of Eq. (2.23) is

u(x, y) = sin(πx) cos(πy).
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In the following, we use Nx = Ny = n. Table 2.3 gives the comparison between

the two strategies. The number of iterations contains three parts. The first two

parts enclosed with parentheses are the number of V-Cycles on Ω2∆ and the number

of V-Cycles on Ω∆. For the MSMG-Iter method, the third part is the number of

iterations in the iterative refinement procedure. We recorded two different kinds of

CPU time. “Total CPU” is the total CPU time for solving the problem; “Accuracy-

Improve CPU” is the CPU time for obtaining a fine grid sixth-order solution from

an extrapolated coarse grid sixth-order solution by using iterative refinement pro-

cedure (MSMG-Iter) or MCG updating strategy (MSMG-MCG). We find that the

MSMG-MCG method and the MSMG-Iter method were able to compute compara-

ble sixth-order solutions, but the MSMG-MCG method took less CPU time than the

MSMG-iter method. This is because the proposed MCG updating strategy eliminates

the iterative refinement procedure. The column of “Accuracy-Improve CPU” shows

the CPU cost that the MCG updating strategy can save compared to the iterative re-

finement procedure. From the “error” column, we find that the MSMG-iter method

is slightly more accurate than the MSMG-MCG method. One possible reason for

this is that the MSMG-iter method uses the operator based interpolation iteratively,

which is generating from the FOC scheme for uniform grids with mesh-size ∆ to ob-

tain sixth-order solutions for the remaining fine grid points, while the MSMG-MCG

method uses the FOC scheme with unequal mesh-sizes ∆ and 2∆ to compute sixth-

order solutions for those fine grid points. The former FOC scheme theoretically has

smaller truncation error than the latter one.

In Figure 2.5, we note that when the mesh became finer, the CPU time for the it-

erative refinement procedure in the MSMG-Iter method increased very fast. However,

for the MCG updating strategy in the MSMG-MCG method, its CPU time showed

slow growth. The numerical comparison on CPU costs between two fine grid updating

strategies were consistent with the analysis in Tables 2.1 and 2.2. It is visible that
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Table 2.3: Test Problem 1: Comparison of the CPU costs and solution accuracy with
different mesh-sizes.

n Strategy # it Total CPU(s) Accuracy error order
-Improve CPU(s)

64 MSMG-Iter (8,8),24 0.023 0.004 2.060e-7 -
MSMG-MCG (8,8),- 0.019 0.000 2.836e-7 -

128 MSMG-Iter (8,9),23 0.096 0.006 3.356e-9 5.94
MSMG-MCG (8,9),- 0.092 0.000 4.416e-9 6.00

256 MSMG-Iter (9,9),21 0.423 0.022 4.642e-11 6.18
MSMG-MCG (9,9),- 0.401 0.004 8.262e-11 5.74

512 MSMG-Iter (9,9),19 1.283 0.042 8.284e-13 5.81
MSMG-MCG (9,9),- 1.143 0.006 1.089e-12 6.24

1024 MSMG-Iter (9,9),18 4.037 0.199 3.211e-14 4.69
MSMG-MCG (9,9),0 3.839 0.026 3.577e-14 4.93

the MCG updating strategy has better scalability and computational efficiency than

the iterative updating strategy.

2.5.2 Test problem 2

We chose a 2D convection-diffusion equation with variable coefficients as follows

uxx(x, y) + uyy(x, y) + p(x, y)ux(x, y)+q(x, y)uy(x, y) = f(x, y),

(x, y) ∈ Ω = [0, 1]× [0, 1], (2.24)

where 
u(x, y) = x2y2(1− x)(1− y)
p(x, y) = Px(1− y)
q(x, y) = Py(1− x)

.

For this test problem, a larger value of P means a larger Reynolds number (Re).

The cell Reynolds number is defined as the ratio of the convection to diffusion in the

form of

Re = max( sup
(x,y)∈Ω

|p(x, y)|, sup
(x,y)∈Ω

|q(x, y)|)h/2. (2.25)

Convection-diffusion equations like Eq. (2.24) become increasingly difficult to

solve by iterative methods as Re increases [86]. Since the exact order of solution

accuracy from the FOC scheme is related to the Reynolds number [81], we computed
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Figure 2.5: Comparison of the Accuracy-Improve CPU time and the number of grid
intervals between the iterative refinement strategy and the MCG updating strategy
for solving Problem 1. Each symbol with increasing CPU cost corresponds to an
increasing fine grid: 64, 128, 256, 512 and 1024 intervals.

the exact order of accuracy and used the general Richardson extrapolation formula

(2.11).

We tested for a difficult case with P = 105 and used the residual scaling technique

[85] to accelerate V-Cycles. Set Nx = Ny = n in the following tables and figures.

Residual scaling techniques have been proposed and applied by Zhang in [85,

87] and is a kind of acceleration technique which is designed to accelerate standard

multigrid methods in different situations. There are two categories of acceleration

techniques. The first one contains pre-acceleration techniques, which accelerate the

multigrid process before the coarse grid procedure. The other one consists of the

post-acceleration techniques, which accelerate the multigrid process after the coarse

grid procedure. One type of pre-acceleration techniques is the pre-scaling technique

which scales the residual vector by a pre-determined residual scaling factor before it

is projected to the coarse grid. Meanwhile, one type of post-acceleration techniques is
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Table 2.4: Test Problem 2: Comparison of the CPU costs and solution accuracy with
different mesh-sizes for P = 105.

n Strategy # it Total CPU(s) Accuracy error order
-Improve CPU(s)

64 MSMG-Iter (167,443),1745 0.839 0.041 1.931e-4 -
MSMG-MCG (167,443),- 0.724 0.001 2.014e-4 -

128 MSMG-Iter (443,588),2744 2.492 0.263 6.034e-5 1.68
MSMG-MCG (443,588),- 2.249 0.002 5.962e-5 1.76

256 MSMG-Iter (588,367),2176 7.665 0.829 3.663e-6 4.04
MSMG-MCG (588,367),- 6.772 0.011 3.877e-6 3.94

512 MSMG-Iter (367,253),1046 25.833 2.318 1.219e-7 4.91
MSMG-MCG (367,253),- 23.316 0.043 1.568e-7 4.63

1024 MSMG-Iter (253,236),522 95.073 6.029 3.155e-9 5.27
MSMG-MCG (253,236),- 89.982 0.179 5.103e-9 4.94

the post-scaling technique which scales the correction term by a scaling factor chosen

to minimize the error in energy norm. Zhang unified the pre-scaling technique and

the post-scaling technique as the residual scaling techniques. He proved that the pre-

scaling and post-scaling techniques are mathematically equivalent if and only if their

scaling factors are equal. He also showed that the pre-scaling technique is cheaper

and has a wider application than the post-scaling technique. Therefore, we chose the

pre-scaling technique to apply in the present algorithm. The details of how to choose

an optimal residual scaling factor with high Reynolds number can be found in [92]. In

our experiments, we tested several scaling factors and only listed the best numerical

results.

The numerical data with comparison are shown in Table 2.4. Similarly, we had

three parts in the number of iterations and recorded two types of CPU cost. From

the third part of the number of iterations, we can see that the iterative refinement

procedure took hundreds, even thousands of iterations to update grid points on the

finest grid for improving the solution accuracy. The “Accuracy-Improve CPU” column

illustrates that the MCG updating strategy has higher computational efficiency than

the iterative refinement procedure. At the same time, the “Total CPU” column shows

that the proposed method indeed accelerates the MSMG computation. In addition,
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Figure 2.6: Comparison of the Accuracy-Improve CPU time and the number of grid
intervals between the iterative refinement strategy and the MCG updating strategy
for solving Problem 2 (P = 105). Each symbol with increasing CPU cost corresponds
to an increasing fine grid: 64, 128, 256, 512 and 1024 intervals.

the MSMG-MCG method and the MSMG-Iter method were able to obtain solutions

of comparable accuracy, but the order of solutions was reduced and did not reach

six. The reason for this is that the solutions from the FOC scheme cannot reach the

fourth-order accuracy when Re is very large [81].

Figure 2.6 compares the scalability of the MCG updating strategy and the iterative

refinement procedure. When the number of grid intervals increased, the CPU cost

on the iterative refinement procedure increased quickly, while the CPU cost on the

MCG updating strategy increased much more slowly. When n = 1024, the iterative

refinement procedure required 6.029 seconds to update fine grid points for improving

their solutions, while the MCG updating strategy only took 0.179 seconds on the

improvement.

Table 2.5 contains the numerical results with various P values on a grid with a

fixed mesh-size h = 1/256. Using Eq. (2.25), we computed the corresponding Re
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Table 2.5: Test Problem 2: Comparison of the CPU costs and solution accuracy with
different P values for n = 256.

n = 256
P Re Strategy # it Total CPU(s) Accuracy error

-Improve CPU(s)
1 1.953125e-3 MSMG-Iter (9,9),8 0.432 0.003 2.181e-13

MSMG-MCG (9,9),- 0.467 0.026 1.706e-13

10 1.953125e-2 MSMG-Iter (9,9),12 0.447 0.012 3.266e-13
MSMG-MCG (9,9),- 0.464 0.028 6.720e-13

102 1.953125e-1 MSMG-Iter (9,8),15 0.415 0.014 1.090e-11
MSMG-MCG (9,8),- 0.432 0.027 4.600e-11

103 1.953125e0 MSMG-Iter (15,15),18 0.676 0.017 9.779e-10
MSMG-MCG (15,15),- 0.616 0.010 4.293e-9

104 1.953125e1 MSMG-Iter (62,52),147 1.389 0.056 8.778e-7
MSMG-MCG (58,50),- 1.321 0.009 2.169e-7

105 1.953125e2 MSMG-Iter (588,367),2176 7.601 0.821 3.663e-6
MSMG-MCG (588,367),- 6.671 0.010 2.877e-6

106 1.953125e3 MSMG-Iter (131,219),7210 6.029 2.725 1.651e-5
MSMG-MCG (131,219),- 3.464 0.010 1.638e-5

107 1.953125e4 MSMG-Iter (132,239),8235 6.975 3.110 1.139e-5
MSMG-MCG (132,239),0 3.548 0.011 1.135e-5

108 1.953125e5 MSMG-Iter (132,239),8317 6.860 3.142 1.146e-5
MSMG-MCG (132,239),0 3.692 0.010 1.145e-5

109 1.953125e6 MSMG-Iter (132,239),8325 6.815 3.146 1.149e-5
MSMG-MCG (132,239),0 3.572 0.010 1.141e-5

1010 1.953125e7 MSMG-Iter (132,239),8325 6.858 3.142 1.150e-5
MSMG-MCG (132,239),0 3.577 0.010 1.149e-5
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Figure 2.7: Comparison of the Accuracy-Improve CPU time between the iterative
refinement strategy and the MCG updating strategy for solving Problem 2 (n = 256)
with different P values.

values under different P values. We note that the magnitude of the Reynolds number

affected the convergence rate of V-cycles and the solution accuracy simultaneously.

The accuracy improvement of both methods was degraded when Re increased. For

two fine grid updating strategies, when Re was small (P < 103), the number of

iterations in the iterative refinement procedure was small and its CPU cost was almost

less than the CPU cost of the MCG updating strategy. When Re increased, the

number of iterations in the iterative refinement procedure increased very quickly, and

its CPU cost was far more than that of the MCG updating strategy.

Figure 2.7 compares the CPU cost of two fine grid updating strategies for different

values of P . We see that there was no evident change of the CPU cost of the MCG

updating strategy when P increased. However, for the iterative updating strategy,

there is a substantial change in the CPU cost at 104 ≤ P ≤ 106 and the CPU cost

remains high for P > 106. Compared to the iterative refinement procedure, the MCG
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updating strategy is less sensitive to the change of Re(P ) and exhibits better stability.

2.6 Concluding Remarks

We developed a new MCG updating strategy to compute sixth-order solutions for fine

grid points. The proposed strategy can replace the iterative refinement procedure in

the existing MSMG method and thus accelerates the MSMG computation in com-

puting high accuracy solutions for the 2D steady-state equations. Numerical results

show that the MCG updating strategy is more efficient, scalable and stable than the

iterative refinement procedure. The idea of using MCG updating strategy to directly

compute more accurate fine grid solutions from the extrapolated coarse grid solutions

can be extended to solve higher dimensional PDEs. We will discuss the details of its

extension to 3D problems in the next chapter.

Copyright c⃝ Ruxin Dai 2014
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3 Sixth-Order Solution with Multiscale Multigrid Method and Multiple
Coarse Grid Updating Strategy for 3D Steady-State Equations

3.1 Introduction

In this chapter, we extend our Richardson extrapolation-based sixth-order method

with multiscale multigrid (MSMG) method and multiple coarse grid (MCG) updating

strategy to compute for three dimensional (3D) convection-diffusion equation as

uxx + uyy + uzz + p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz = f(x, y, z),

(x, y, z) ∈ Ω, (3.1)

where Ω is a continuous domain in a 3D space composed by a union of rectangu-

lar solids with suitable boundary conditions prescribed on ∂Ω. Here the unknown

function u, variable coefficient functions p(x, y, z), q(x, y, z), r(x, y, z) and the forcing

function f(x, y, z) are assumed to be continuously differentiable and have required

partial derivatives on Ω.

The numerical computing of Eq. (3.1) is very important in simulations and model-

ing applications, such as fluid dynamics, heat transfer and ocean modeling. Compared

with lower dimensional problems, 3D problems face more serious computational chal-

lenges due to the requirements on the memory and CPU time to obtain solutions with

desirable accuracy. In order to get accurate solutions with limited computational re-

sources, high-order compact (HOC) difference methods have been proposed by many

researchers and used to solve 3D PDEs [2, 35, 67, 88, 94]. These methods have been

demonstrated to achieve high accuracy, numerical stability, and computational effi-

ciency. In addition, they can handle boundary conditions effectively. Besides using

HOC schemes, another way to save CPU time is to use parallel computing. Gupta

and Zhang realized parallelization and vectorization by using four colors for 19-point

scheme [36] and using two colors for 15-point scheme [91]. For other parallel compu-

tations of the 3D convection-diffusion equation, readers are referred to [49, 99, 100].
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Up to now, fourth-order compact (FOC) schemes for solving the 3D convection-

diffusion equation have been studied extensively in the literature. Recently, sixth-

order compact schemes are found to be more computationally efficient than the FOC

schemes. To obtain a computed solution of given accuracy, the sixth-order scheme uses

less computational cost than the FOC scheme does. Ma and Ge [50] extended the ex-

plicit sixth-order method with Richardson extrapolation proposed by Sun and Zhang

[69] to solve 3D convection-diffusion equations. The MSMG method for 2D problems

proposed by Wang and Zhang [79, 81] has been extended to solve 3D convection-

diffusion equations in [80]. However, in the current MSMG computation, updating

fine grid points uses an iterative refinement procedure, which converges slowly and

consumes a large amount of CPU time. For 2D problems, there are 1/4 fine grid points

with solutions of sixth-order accuracy after applying Richardson extrapolation. Then,

an iterative refinement procedure is used to upgrade the solution accuracy for the re-

maining 3/4 fine grid points. For 3D problems, only 1/8 fine grid points could reach

sixth-order solutions directly from the Richardson extrapolation procedure. Next, the

iterative procedure is executed to improve solution accuracy for the other 7/8 fine

grid points. In addition, the number of grid points for 3D problems is much more

than that for 2D problems. It is evident that the computational cost of the iterative

refinement procedure is considerable for high dimensional problems. In Chapter 2, we

presented an MCG updating strategy to compute sixth-order solutions for all fine grid

points in 2D. In this Chapter, we extend the MCG updating strategy to 3D and thus

to improve the MSMG computation for the 3D convection-diffusion equation. Anal-

ogously, the MCG updating strategy eliminates the iterative refinement procedure

on the fine grid as well as decreases the coupling among grid points in the updating

process. In other words, the new strategy not only reduces the CPU cost but also pro-

vides a convenient way for parallelization. Therefore, the proposed MSMG method

with the MCG updating strategy is able to reach a higher computational efficiency
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compared to the current MSMG method with the iterative refinement procedure.

3.2 FOC Scheme With Unequal Mesh-Size Discretization for the 3D
Convection-Diffusion Equation

The Richardson extrapolation-based sixth-order method is based on fourth-order dis-

cretization schemes. There are two situations that FOC schemes are needed. The

first one is to provide fourth-order solutions on two scale uniform grids for Richardson

extrapolation. We could use the FOC scheme from Zhang’s paper [88] like Wang did

in [80]. The second one is during the implementation process of our new fine grid

updating strategy. Zhang’s FOC scheme is not appropriate for this situation since the

grids involved in the proposed updating strategy are with unequal mesh-sizes in each

coordinate direction. Therefore, we need an FOC scheme with unequal mesh-size

discretization for solving the 3D convection-diffusion equation in this section.

Assume that the discretization is carried out on a 3D grid with mesh-sizes ∆x,

∆y and ∆z in the x, y and z coordinate directions, respectively. We use u0 to denote

the value of u(x, y, z) at an internal mesh point (i, j, k). The approximate values of

its immediate 18 neighboring points are denoted by ul, l = 1, 2, ..., 18, as in Fig. 3.1.

The 8 white colored corner points in Fig. 3.1 are not used in the finite difference

scheme. The discrete values of pl, ql, rl and fl for l = 0, 1, ..., 6 are defined similarly.
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Figure 3.1: Labeling of the 3D grid points in a cuboid.
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The approach we take here was advocated by Spotz and Carey [66, 65, 67] and

used by Zhang and Ge [94] in developing an HOC scheme for the 3D convection-

diffusion equation on uniform grids with a symbolic computation procedure. Since

the derivation process is a complex substitution and term collection process, we choose

to use the symbolic computation package from Maple.

Suppose the solution u has continuous partial derivatives of sufficient orders. By

using Taylor series, its first and second-order partial derivatives with respect to x can

be approximated by

∂u

∂x
= δxu−

∆x2

6

∂3u

∂x3
− ∆x4

120

∂5u

∂x5
+O(∆x6), (3.2)

∂2u

∂x2
= δ2xu−

∆x2

12

∂4u

∂x4
− ∆x4

360

∂6u

∂x6
+O(∆x6), (3.3)

where δx and δ2x are the first and second-order central difference operators with respect

to x. The first and second-order partial derivatives of u with respect to y and z can

be approximated to O(∆y6) and O(∆z6) order analogously.

In order to derive a compact scheme up to the fourth-order accuracy, we use

the approximation formulas (3.2) and (3.3) for the first and second-order partial

derivatives of u with respect to x and their counterparts with respect to y and z to

substitute the first and second-order partial derivatives of u in Eq. (3.1) and drop

the O(∆4) and higher-order items. The substitution yields

(δ2xu+ δ2yu+ δ2zu+ pδxu+ qδyu+ rδzu− f)

− ∆x2

6
(
∂4u

2∂x4
+ p

∂3u

∂x3
)− ∆y2

6
(
∂4u

2∂y4
+ q

∂3u

∂y3
)− ∆z2

6
(
∂4u

2∂z4
+ r

∂3u

∂z3
) +O(∆4) = 0,

(3.4)

where p, q, r and f are short for p(x, y, z), q(x, y, z), r(x, y, z) and f(x, y, z), and

O(∆4) denotes the truncated terms in the order of O(∆x4 + ∆y4 + ∆z4). Since

the O(∆2) terms include ∆x2, ∆y2 and ∆z2, if the third and fourth-order partial

derivatives of u with respect to x, y and z can be approximated to reach the second-
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order accuracy, we can have the fourth-order accuracy for the whole approximation

scheme.

We differentiate the original partial differential equation to obtain the approxima-

tions for the third and fourth-order partial derivatives of u with respect to x, y and

z. To illustrate the idea, we differentiate Eq. (3.1) with respect to x to obtain

∂3u

∂x3
=

∂f

∂x
− ∂3u

∂x∂y2
− ∂3u

∂x∂z2
− ∂p

∂x

∂u

∂x
−p∂

2u

∂x2
− ∂q

∂x

∂u

∂y
−q ∂2u

∂x∂y
− ∂r

∂x

∂u

∂z
−r ∂2u

∂x∂z
(3.5)

for the third order partial derivative of u with respect to x, and repeat the process

to obtain

∂4u

∂x4
=

∂2f

∂x2
− ∂4u

∂x2∂y2
− ∂4u

∂x2∂z2
− ∂2p

∂x2

∂u

∂x
− 2

∂p

∂x

∂2u

∂x2
− p

∂3u

∂x3

− ∂2q

∂x2

∂u

∂y
− 2

∂q

∂x

∂2u

∂x∂y
− q

∂3u

∂x2∂y
− ∂2r

∂x2

∂u

∂z
− 2

∂r

∂x

∂u

∂x∂z
− r

∂3u

∂x2∂z
(3.6)

for the fourth-order partial derivative of u with respect to x. The third and fourth-

order partial derivatives of u with respect to y and z can be obtained analogously.

Then, we examine whether or not the approximations of the third and fourth-

order partial derivatives of u can reach the second-order accuracy. After using the

approximation of ∂3u
∂x3 in Eq. (3.5) to substitute the ∂3u

∂x3 term in the approximation

of ∂4u
∂x4 in Eq. (3.6) (similar substitutions in the approximations of ∂4u

∂y4
and ∂4u

∂z4
),

all terms in the approximations of the third and fourth-order partial derivatives of

u are no higher than second-order derivatives of u with respect to any variables.

For the first and second-order partial derivatives of the unknown function u and

other known functions p, q, r, and f , they can be approximated to the second-order

accuracy by applying the first and second-order central difference operators, which

uses 7 minimum grid points centered at 0, i.e., the grid points 0,1,2,3,4,5 and 6. For

the cross derivatives, we can use the grid points outside the 7 minimum grid points
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to approximate. For example, the approximations of ∂3u
∂x∂y2

and ∂4u
∂x2∂y2

as

∂3u

∂x∂y2
≈ δxδ

2
yu =

1

∆y2
(δxu2 − 2δxu0 + δxu4)

=
1

2∆x∆y2
[u7 − u8 − 2(u1 − u3) + u10 − u9]

∂4u

∂x2∂y2
≈ δ2xδ

2
yu =

1

∆y2
(δ2xu2 − 2δ2xu0 + δ2xu4)

=
1

∆x2∆y2
[u7 − 2u2 + u8 − 2(u1 − 2u0 + u3) + u9 − 2u4 + u10]

have O(∆2) accuracy. Here O(∆2) absorbs O(∆x2), O(∆y2) and O(∆x · ∆y). All

other cross derivatives can be approximated analogously, which results in a 19-point

FOC difference scheme as
18∑
l=0

αlul = F. (3.7)

In a special case with ∆x = ∆y = ∆z, the scheme is the same as Zhang’s explicit

FOC scheme [88]. In general cases, if we denote the mesh aspect ratio λ1 = ∆y/∆x

and λ2 = ∆z/∆x, the coefficients αl and the right hand side F are given in Appendix

B.

3.3 Richardson Extrapolation-based Sixth-Order Solution with MSMG
Method andMCGUpdating Strategy for the 3D Convection-Diffusion
Equation

3.3.1 Improving solution accuracy by Richardson extrapolation in 3D

With Eq. (3.7), the fourth-order accurate solutions u∆
i,j,k and u2∆

i,j,k can be computed

by the MSMG method on Ω∆ and Ω2∆, respectively. Then we apply the Richard-

son extrapolation technique to compute a higher-order solution ũ2∆
i,j,k on Ω2∆. The

Richardson extrapolation has the formula as [6]

ũ2∆
i,j,k =

(2pu∆
2i,2j,2k − u2∆

i,j,k)

2p − 1
, (3.8)

where p is the order of accuracy before the extrapolation, and the order of accuracy

will be upgraded to p + 2 after the extrapolation. When the convection-diffusion

equation is diffusion-dominated, we could assume p = 4 if the solution values for
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the extrapolation are computed by the FOC scheme. Therefore, we can get a sixth-

order solution on the coarse grid Ω2∆ by using Eq. (3.8). By using the direct in-

terpolation, the sixth-order coarse grid solution ũ2∆
i,j,k are injected into corresponding

(even, even, even) fine grid points.

3.3.2 MCG updating strategy for 3D problems

The extrapolated sixth-order solution is on the coarse grid, not on the fine grid.

The coarse grid sixth-order solution can be directly interpolated into the fine grid,

which makes partial fine grid points reach sixth-order solutions. The problem is how

to improve the solution of the remaining fine grid points to reach the sixth-order

accuracy. Since the updating strategy deals with the fine grid points by groups, the

fine grid points are divided into eight different groups by their odd or even index in

the x, y and z coordinate directions, as in Fig. 3.2.
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h
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a

a a

a a
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e eb

d hh
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b:(odd,odd,odd)
a:(even,even,even)

c:(odd,even,odd)
d:(odd,odd,even)
e:(even,odd,odd)
f:(odd,even,even)
g:(even,even,odd)
h:(even,odd,even)

Figure 3.2: Group information of 3D grid points in a cuboid.

From Section 1.4, we have known that for 3D problems, a fine grid can be coarsened

into eight coarse grids. Each coarse grid is composed by one group of fine grid points

in Fig. 3.2. For instance, the (even, even, even) coarse grid (also called the standard

coarse grid) is built up by grid points in group a, which are the (even, even, even) fine

grid points. Unlike using an iterative refinement procedure to update the solution

of the remaining fine grid points, the main idea of the MCG updating strategy is to
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directly compute sixth-order solutions for fine grid points group by group by using

different coarse grid views from various combinations of the standard coarse grid and

other coarse grids.

Before we start to illustrate our ideas in details, there are following three points

to be underlined. First, six coarse grid views will be constructed for computing sixth-

order solutions for six groups’ fine grid points, respectively. These groups exclude

groups a and b for that the former one has reached the sixth-order solution after the

direct interpolation from the extrapolated coarse grid solutions and the latter one will

get the sixth-order solution by using an operator based interpolation. Second, the

coarse grid views are virtual. In other words, the grid views to be described look like

the corresponding coarse grids, but they do not physically exist. All computations

are conducted on the fine grid. Third, the updating process has three stages. At

the beginning, fine grid points in groups f , g and h are updated by some 2D solver.

Then, fine grid points in groups c, d and e are updated by some 1D solver. At last,

fine grid points in group b are updated by a one step operator based interpolation.

Update fine grid points of groups f , g and h

In order to update the fine grid points of group f , we create an X-odd grid view

composed of fine grid points from groups a and f , which looks like a combination

of the (even, even, even) coarse grid and the (odd, even, even) coarse grid, as in Fig.

3.3.

Notice that the X-odd grid view is a view of unequal mesh-size grid with mesh-

sizes ∆, 2∆ and 2∆ in the x, y and z coordinate directions, respectively. In Fig.

3.3, the red-colored grid points, which are from group a, have sixth-order solutions,

while the black-colored grid points from group f have fourth-order solutions. If we

visit the (y, z)-plane through the x direction for x = odd, we can compute sixth-order

solutions of all black-colored grid points plane by plane. There are Nx/2 2D sub-
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Figure 3.3: X-odd grid view: fine grid points from groups a and f .

problems, where Nx is the number of grid intervals along the x direction. The 9-point

computational stencil of the (y, z)-plane 2D sub-problem is generated from Eq. (3.7)

as

Af0ũf0 + Af1ũf1 + Af2ũf2 + Af3ũf3 + Af4ũf4 + Af5ũf5 + Af6ũf6 + Af7ũf7 + Af8ũf8

(3.9)

= F − α1u1 − α3u3 − α7u7 − α8u8 − α9u9 − α10u10 − α11u11

− α13u13 − α15u15 − α17u17,

where the coefficients Afl and the 2D solutions ũfl(l = 0, 1, ..., 8) of grid points from

group f are set in the group f part of Table 3.1.

It is essentially a 9-point compact scheme with 2∆ mesh-size. Since the coefficients

(Afl and αfl) and F in Eq. (3.9) are from the unequal mesh-size coarse grid view X-

odd, they are calculated by the FOC scheme with unequal mesh-size we developed in

Section 3.2. For the u values in the right hand side of Eq. (3.9), we use the computed

solutions of grid points in group a which have reached the sixth-order accuracy.

Next, we construct a Z-odd grid view composed of fine grid points from groups
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a and g, which looks like a combination of the (even, even, even) coarse grid and

the (even, even, odd) coarse grid, as in Fig. 3.4. This view is used to compute a

sixth-order solution for the fine grid points of group g.

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

X

Z

Y

g g

ggg

ggg

g

Figure 3.4: Z-odd grid view: fine grid points from groups a and g.

The Z-odd grid view is a view of unequal mesh-size grid with mesh-sizes 2∆, 2∆

and ∆ in the x, y and z coordinate directions, respectively. In Fig. 3.4, we mark the

grid points from group a as red, which have sixth-order solutions. At the same time,

we mark the grid points from group g as black, which have fourth-order solutions. If

we visit the (x, y)-plane through the z direction for z = odd, all black-colored grid

points can be solved plane by plane. There are totally Nz/2 2D sub-problems, where

Nz is the number of grid intervals along the z direction. For the (x, y)-plane 2D

sub-problem, its 9-point computational stencil is generated from Eq. (3.7) as

Ag0ũg0 + Ag1ũg1 + Ag2ũg2 + Ag3ũg3 + Ag4ũg4 + Ag5ũg5 + Ag6ũg6 + Ag7ũg7 + Ag8ũg8

(3.10)

= F − α5u5 − α6u6 − α11u11 − α12u12 − α13u13 − α14u14 − α15u15

− α16u16 − α17u17 − α18u18,

where the coefficients Agl and the 2D solutions ũgl(l = 0, 1, ..., 8) of grid points from
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group g are set in the group g part of Table 3.1.

Similarly, the coefficients (Agl and αgl) and F in Eq. (3.10) are from the unequal

mesh-size coarse grid view Z-odd and need to be computed by the FOC scheme with

unequal mesh-size. Because the u values in the right hand side of Eq. (3.10) have the

computed solutions with sixth-order accuracy, we can compute a sixth-order solution

for the grid points in the left hand side which are from group g.

We continue updating the fine grid points in group h. To this end, we build a

Y-odd grid view formed by fine grid points from groups a and h, which looks like

a combination of the (even, even, even) coarse grid and the (even, odd, even) coarse

grid, as in Fig. 3.5.
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h h h
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h h h

Figure 3.5: Y-odd grid view: fine grid points from groups a and h.

The Y-odd grid view is a view of unequal mesh-size grid with mesh-sizes 2∆, ∆

and 2∆ in the x, y and z coordinate directions, respectively. In Fig. 3.5, the red-

colored points are the grid points from group a with sixth-order solutions, while the

black-colored points are the grid points from group h with fourth-order solutions.

When we visit the (x, z)-plane through the y direction for y = odd, all black-colored

grid points could be solved plane by plane. There are Ny/2 2D sub-problems, where

Ny is the number of grid intervals along the y direction. For the (x, z)-plane 2D
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sub-problem, its 9-point computational stencil is generated from Eq. (3.7) as

Ah0ũh0 + Ah1ũh1 + Ah2ũh2 + Ah3ũh3 + Ah4ũh4 + Ah5ũh5 + Ah6ũh6 + Ah7ũh7 + Ah8ũh8

(3.11)

= F − α2u2 − α4u4 − α7u7 − α8u8 − α9u9 − α10u10 − α12u12

− α14u14 − α16u16 − α18u18,

where the coefficients Ahl and the 2D solutions ũhl(l = 0, 1, ..., 8) of grid points from

group h are set in the group h part of Table 3.1.

The coefficients (Ahl and αhl) and F in Eq. (3.11) are from the unequal mesh-size

coarse grid view Y-odd and we should use the FOC scheme with unequal mesh-size

to compute them. Since the u values in the right hand side of Eq. (3.11) are from

the grid points of group a with the sixth-order solution, we expect to get sixth-order

solutions for the grid points in the left hand side.

Table 3.1: Settings of the coefficients A♯l and the solutions ũ♯l in 2D sub-problems (♯
denotes the group name).

group f group g group h
Afl αl ũfl ul Agl αl ũgl ul Ahl αl ũhl ul

Af0 α0 ũf0 u0 Ag0 α0 ũg0 u0 Ah0 α0 ũh0 u0

Af1 α5 ũf1 u5 Ag1 α1 ũg1 u1 Ah1 α1 ũh1 u1

Af2 α2 ũf2 u2 Ag2 α2 ũg2 u2 Ah2 α5 ũh2 u5

Af3 α6 ũf3 u6 Ag3 α3 ũg3 u3 Ah3 α3 ũh3 u3

Af4 α4 ũf4 u4 Ag4 α4 ũg4 u4 Ah4 α6 ũh4 u6

Af5 α12 ũf5 u12 Ag5 α7 ũg5 u7 Ah5 α11 ũh5 u11

Af6 α16 ũf6 u16 Ag6 α8 ũg6 u8 Ah6 α13 ũh6 u13

Af7 α18 ũf7 u18 Ag7 α9 ũg7 u9 Ah7 α17 ũh7 u17

Af8 α14 ũf8 u14 Ag8 α10 ũg8 u10 Ah8 α15 ũh8 u15

Update fine grid points of groups c, d and e

Until now, we have four groups of fine grid points which have reached sixth-order

solutions. We are going to update other three groups’ fine grid points using the

updated fine grid points. First, we create a Y-even grid view which is built up
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with fine grid points from groups a, c, f and g. It looks like a combination of the

(even, even, even) coarse grid, the (odd, even, odd) coarse grid, the (odd, even, even)

coarse grid and the (even, even, odd) coarse grid, as in Fig. 3.6. We use this view to

compute sixth-order solutions for the fine grid points of group c.
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Figure 3.6: Y-even grid view: fine grid points from groups a, c, f and g.

The Y-even grid view has mesh-sizes ∆, 2∆ and ∆ in the x, y and z coordinate

directions, respectively. In Fig. 3.6, the red-colored grid points, which are from groups

a, f and g, have computed solutions with sixth-order accuracy, while the black-colored

grid points from group c have solutions with fourth-order accuracy. Note that the

black points form vertical lines and we can use a tridiagonal solver in the y direction

with x = odd and z = odd to solve all black-colored points line by line. Here we

have Nx/2×Nz/2 Y-line 1D sub-problems, where Nx is the number of grid intervals

along the x direction and Nz is the number of grid intervals along the z direction.

The 3-point computational stencil of the Y-line 1D sub-problem is obtained from Eq.
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(3.7) as

Ac−1ũc−1 + Ac0ũc0 + Ac1ũc1 (3.12)

= F − α1u1 − α3u3 − α5u5 − α6u6 − α7u7 − α8u8 − α9u9 − α10u10 − α11u11

− α12u12 − α13u13 − α14u14 − α15u15 − α16u16 − α17u17 − α18u18,

where the coefficients Acl and the 1D solutions ũcl(l = −1, 0, 1) of grid points from

group c are set in the group c part of Table 3.2.

At the same time, we are aware that the coefficients (Acl and αcl) and F in

Eq. (3.12) are from the unequal mesh-size coarse grid view Y-even and need to be

calculated by the FOC scheme with unequal mesh-size. For the u values in the right

hand side of Eq. (3.12), the computed solutions with sixth-order accuracy from grid

points of groups a, f and g are involved.

Next, we create another grid view to compute sixth-order solutions for the fine

grid points of group d. The grid view called Z-even contains fine grid points from

groups a, d, f and h, which can be viewed as a combination of the (even, even, even)

coarse grid, the (odd, odd, even) coarse grid, the (odd, even, even) coarse grid and the

(even, odd, even) coarse grid, as in Fig. 3.7.
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Figure 3.7: Z-even grid view: fine grid points from groups a, d, f and h.

The Z-even grid view has mesh-sizes ∆, ∆ and 2∆ in the x, y and z coordinate

directions, respectively. In Fig. 3.7, we use red to mark the grid points from groups a,
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f and g with sixth-order solutions, and use black to mark the grid points from group

d with fourth-order solutions. We notice that the black points form lines along the z

direction and a tridiagonal solver can be applied to solve all black-colored points line

by line for x = odd and y = odd. There are Nx/2 × Ny/2 Z-line 1D sub-problems,

where Nx is the number of grid intervals along the x direction and Ny is the number

of grid intervals along the y direction. For the Z-line 1D sub-problem, its 3-point

computational stencil is obtained from Eq. (3.7) as

Ad−1ũd−1 + Ad0ũd0 + Ad1ũd1 (3.13)

= F − α1u1 − α2u2 − α3u3 − α4u4 − α7u7 − α8u8 − α9u9 − α10u10 − α11u11

− α12u12 − α13u13 − α14u14 − α15u15 − α16u16 − α17u17 − α18u18,

where the coefficients Adl and the 1D solutions ũdl(l = −1, 0, 1) of grid points from

group d are set in the group d part of Table 3.2.

And we also note that the coefficients (Adl and αdl) and F in Eq. (3.13) are related

to the unequal mesh-size coarse grid view Z-even and thus are calculated by the FOC

scheme with unequal mesh-size. For the u values in the right hand side of Eq. (3.13),

the computed solutions of grid points from groups a, f and h are used.

Fine grid points in group e are updated analogously. We combine the (even, even, even)

coarse grid, the (even, odd, odd) coarse grid, the (even, even, odd) coarse grid, and

the (even, odd, even) coarse grid to get an X-even grid view, which contains fine grid

points from groups a, e, g and h, as in Fig. 3.8. We use this view to compute

sixth-order solutions for the grid points of group e.

The X-even grid view has mesh-sizes 2∆, ∆ and ∆ in the x, y and z coordinate

directions, respectively. In Fig. 3.8, the red-colored points have computed solutions

with sixth-order accuracy, which are from groups a, f and g. The black-colored points

have computed solutions with fourth-order accuracy, which are from group e. Note

that the black points form horizontal lines and we can use a tridiagonal solver in
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Figure 3.8: X-even grid view: fine grid points from groups a, e, g and h.

the x direction with y = odd and z = odd to solve all black-colored points line by

line. There are totally Ny/2×Nz/2 X-line 1D sub-problems, where Ny is the number

of grid intervals along the y direction and Nz is the number of grid intervals along

the z direction. The 3-point computational stencil of the X-line 1D sub-problem is

obtained from Eq. (3.7) as

Ae−1ũe−1 + Ae0ũe0 + Ae1ũe1 (3.14)

= F − α2u2 − α4u4 − α5u5 − α6u6 − α7u7 − α8u8 − α9u9 − α10u10 − α11u11

− α12u12 − α13u13 − α14u14 − α15u15 − α16u16 − α17u17 − α18u18,

where the coefficients Ael and the 1D solutions ũel(l = −1, 0, 1) of grid points from

group e are set in the group e part of Table 3.2.

And we notice that the coefficients (Ael and αel) and F in Eq. (3.14) are from

the unequal mesh-size coarse grid view X-even and could be calculated by the FOC

scheme with unequal mesh-size. For the u values in the right hand side of Eq. (3.14),

the computed sixth-order solutions of grid points from groups a, g and h are used.

Update fine grid points of group b

So far, we have updated six groups’ fine grid points and computed sixth-order solu-

tions for them. The last group of fine grid points with fourth-order solutions is group
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Table 3.2: Settings of the coefficients A♯l and the solutions ũ♯l in 1D sub-problems (♯
denotes the group name).

group c group d group e
Acl αl ũcl ul Adl αl ũdl ul Ael αl ũel ul

Ac−1 α4 ũc−1 u4 Ad−1 α6 ũd−1 u6 Ae−1 α3 ũe−1 u3

Ac0 α0 ũc0 u0 Ad0 α0 ũd0 u0 Ae0 α0 ũe0 u0

Ac1 α2 ũc1 u2 Ad1 α5 ũd1 u5 Ae1 α1 ũe1 u1

b, which contains (odd, odd, odd) fine grid points. Since every (odd, odd, odd) grid point

is immediately surrounded by grid points with sixth-order solutions, some suitable

interpolation can be used to compute a sixth-order solution. We choose to use a one

step operator based interpolation [80] to update the solution for every (odd, odd, odd)

fine grid point by the following equation

ũi,j,k = [Fi,j,k − α1ui+1,j,k − α2ui,j+1,k − α3ui−1,j,k − α4ui,j−1,k (3.15)

− α5ui,j,k+1 − α6ui,j,k−1 − α7ui+1,j+1,k − α8ui−1,j+1,k

− α9ui−1,j−1,k − α10ui+1,j−1,k − α11ui+1,j,k+1 − α12ui,j+1,k+1

− α13ui−1,j,k+1 − α14ui,j−1,k+1 − α15ui+1,j,k−1 − α16ui,j+1,k−1

− α17ui−1,j,k−1 − α18ui,j−1,k−1]/α0.

Here, αl are the coefficients in Eq. (3.7) and Fi,j,k represents the right hand side part

of Eq. (3.7). Since all grid points in the right hand side have computed sixth-order

solutions, ũi,j,k can get the sixth-order solution.

In the above updating processes, we used multiple coarse grids to generate a series

of direct solutions for fine grid points, which can replace the iterative refinement

procedure so as to improve the computational efficiency. Another potential benefit

of using multiple coarse grids is the concurrency. We notice that the fine grid points

in groups f , g, and h can be updated in parallel since the computational processes

only depend on the grid points from group a with sixth-order solutions. In addition,

within each groups, all 2D sub-problems can be computed simultaneously. For the
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fine grid points in groups c, d and e, they can also be updated in parallel since the

computational processes only need updated grid points with sixth-order solutions

from groups a, c, d and e. Therefore, the proposed MCG updating strategy has

potential to be suitable for current generation supercomputers with large numbers of

processors.

3.3.3 MSMG Method with Richardson extrapolation and MCG updating
strategy for the 3D convection-diffusion equation

By now, we have described all the strategies needed to compute a high accuracy

solution for the 3D convection-diffusion equation with high efficiency. Algorithm 3

gives out the complete description.

3.4 Numerical Results

We tested our sixth-order method (MCG-update-six) and compared the results with

Wang-Zhang’s sixth-order method (Iter-update-six) [80]. The codes were written in

Fortran 77 programming language and all computations were run on one node of the

Lipscomb HPC Cluster at the University of Kentucky. The node has 12 cores with

2.66GHz and 36 GB RAM.

The domain Ω for the following two test cases was the unit cube (0, 1)3. For

both cases, we tested for various Reynolds numbers, respectively. For the diffusion-

dominant equations with small Reynolds number, we could get almost sixth-order

solutions since the computed solutions from the FOC scheme have the order of four

in accuracy and p in Richardson extrapolation Eq. (3.8) is set as 4 so that the

extrapolated solution could be upgraded to the order of six. When the Reynolds

number increases, the order of accuracy of computed solutions using the FOC scheme

varies from four to two and the accuracy improvement from the extrapolation is

degraded [81].

We used the standard V(1,1)-cycle in the MSMG method. The initial guess for the
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Algorithm 3 Sixth order compact approximation for the 3D convection-diffusion
equation using the MSMG method with the MCG updating strategy and Richardson
extrapolation

1. Use the MSMG method to compute the fourth-order solutions u2∆ ∈ Ω4
2∆ and

u∆ ∈ Ω4
∆.

2. Divide fine grid points on Ω∆ into eight groups, see Fig. 3.2.
3. Update fine grid points of group a.
From u2∆ ∈ Ω4

2∆ and u∆ ∈ Ω4
∆, compute ũ2∆ ∈ Ω6

2∆ by Richardson extrapolation using

Eq. (3.8); Directly interpolate the sixth-order coarse grid solutions ũ2∆i,j,k to the corre-

sponding fine grid points in group a to get ũ∆2i,2j,2k ∈ Ω6
∆.

4. Update fine grid points of groups f , g and h.
Use fine grid points from groups a and f to create an X-odd grid view, see Fig. 3.3; Solve

Nx/2 2D sub-problems using Eq. (3.9) to get ũ∆i,2j,2k ∈ Ω6
∆ for fine grid points of group

f .
Use fine grid points from groups a and g to create a Z-odd grid view, see Fig. 3.4; Solve

Nz/2 2D sub-problems using Eq. (3.10) to get ũ∆2i,2j,k ∈ Ω6
∆ for fine grid points of group

g.
Use fine grid points from groups a and h to create a Y-odd grid view, see Fig. 3.5; Solve

Ny/2 2D sub-problems using Eq. (3.11) to get ũ∆2i,j,2k ∈ Ω6
∆ for fine grid points of group

h.
5. Update fine grid points of groups c, d and e.
Use fine grid points from groups a, f , g and c to create a Y-even grid view, see Fig. 3.6;

Solve Nx/2 × Nz/2 1D sub-problems using Eq. (3.12) to get ũ∆i,2j,k ∈ Ω6
∆ for fine grid

points of group c.
Use fine grid points from groups a, f , h and d to create a Z-even grid view, see Fig. 3.7;

Solve Nx/2 × Ny/2 1D sub-problems using Eq. (3.13) to get ũ∆i,j,2k ∈ Ω6
∆ for fine grid

points of group d.
Use fine grid points from groups a, g, h and e to create an X-even grid view, see Fig. 3.8;

Solve Ny/2 × Nz/2 1D sub-problems using Eq. (3.14) to get ũ∆2i,j,k ∈ Ω6
∆ for fine grid

points of group e.
6. Update fine grid points of group b.
For every fine grid point of group b, do a one step operator based interpolation on Ω∆

using

Eq. (3.15) to get ũ∆2i+1,2j+1,2k+1 ∈ Ω6
∆.
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V-Cycle on Ω4∆ was the zero vector. The multigrid V-cycle on Ω2∆ and Ω∆ stopped

when the L2-norm of the difference of the successive solutions was reduced by a

factor of 1010. In the Iter-update-six method, the refinement iterative procedure was

terminated when the L2-norm of the correction vector of the approximate solution was

less than 10−10. In the MCG-update-six method, there are two selections for 2D sub-

problem solver. One is traditional iterative methods, such as Gauss-Seidel method.

The other is multigrid methods. We compared them in numerical experiments and

set the stopping criteria for both as 10−10. Though literatures [48, 73] show that exact

solutions of 2D sub-problems are not necessary in solving 3D problems and that one

multigrid cycle or Gauss-Seidel relaxation is sufficient, we computed full converged

solutions here. By setting the same stopping criteria in the MCG updating process as

in the iterative refinement procedure, we could compare the two sixth-order methods

under the conditions as close as possible. The errors reported were the maximum

absolute errors over the finest grid.

3.4.1 Test problem 1

The first test problem is
u(x, y, z) = cos(4x+ 6y + 8z)
p(x, y, z) = Re sin y sin z cosx
q(x, y, z) = Re sin x sin z cos y
r(x, y, z) = Re sin x sin y cos z

.

This problem has variable coefficients and the constant Re represents the magni-

tude of the convection coefficients. The Dirichlet boundary conditions and the forcing

term f are set to satisfy the exact solution. Assume Nx = Ny = Nz = n. We used

the point Gauss-Seidel relaxation as the smoother for both sixth-order methods in

the MSMG computation.

We first set Re = 0, which reduces the problem to a 3D Poisson equation. Table

3.3 contains the numerical results, which compare the maximum absolute errors, the

CPU time in seconds, the number of iterations and the order of accuracy for the
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computed solutions. The number of iterations has three parts. They are the number

of V-cycles for Ω2∆, the number of V-cycles for Ω∆, and the number of iterations

for the iterative operator based interpolation in the Iter-update-six method. There

are two kinds of recorded CPU time. “Total CPU” is the elapsed time for the whole

solving process of the problem. “Updating CPU” is the CPU time for fine grid

updating to reach the sixth-order solution from the fourth-order solutions on the fine

and coarse grids. For the Iter-update-six method, this part is the iterative refinement

procedure with Richardson extrapolation. For the MCG-update-six, it is the MCG

fine grid updating process with Richardson extrapolation.

Table 3.3: Comparison of the number of iterations, the CPU time in seconds, the max-
imum errors and the order of accuracy between the Iter-update-six method and the
MCG-update-six methods with different 2D sub-problem solvers for solving Problem
1 with Re = 0.

n Method # iteration Total CPU(s) Updating Error Order
CPU(s)

Iter-update-six (8,11), 33 0.005 0.002 1.55e-3 -
8 MCG-update-six(2D-line) (8,11), - 0.005 0.001 5.64e-3 -

MCG-update-six(2D-MG) (8,11) - 0.006 0.002 5.64e-3 -

Iter-update-six (11,12), 43 0.050 0.018 4.90e-5 4.98
16 MCG-update-six(2D-line) (11,12), - 0.042 0.010 1.19e-4 5.57

MCG-update-six(2D-MG) (11,12) - 0.043 0.011 1.19e-4 5.57

Iter-update-six (12,11), 44 0.447 0.171 1.15e-6 5.41
32 MCG-update-six(2D-line) (12,11), - 0.360 0.084 2.05e-6 5.86

MCG-update-six(2D-MG) (12,11), - 0.363 0.087 2.05e-6 5.86

Iter-update-six (11,11), 43 4.847 2.557 2.14e-8 5.75
64 MCG-update-six(2D-line) (11,11), - 1.990 0.672 3.31e-8 5.95

MCG-update-six(2D-MG) (11,11), - 2.999 0.680 3.31e-8 5.95

Iter-update-six (11,11), 39 42.148 22.862 3.81e-10 5.81
128 MCG-update-six(2D-line) (11,11), - 24.952 5.548 5.56e-10 5.90

MCG-update-six(2D-MG) (11,11), - 25.005 5.601 5.56e-10 5.90

Table 3.3 verifies that the new MCG updating strategy is more efficient than

the iterative updating strategy. When the mesh became finer, the CPU time for

the Iter-update-six method increased very quickly and was mainly from the iterative

refinement procedure, which is demonstrated by the “Updating CPU” column. For

the MCG-update-six method, since we used a series of direct solutions to update fine
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Figure 3.9: Comparison of the maximum errors and the total CPU time between the
Iter-update-six method and the MCG-update-six(2D-line) method for solving Prob-
lem 1(Re=0). Each symbol with increasing CPU time corresponds to an increasing
fine grid: 8, 16, 32, 64, and 128 intervals.

grid points and thus eliminated the iterative refinement procedure on the 3D fine grid,

the CPU time for the updating process was reduced effectively. For instance, when

n = 128, the Iter-update-six method spent 42.148 seconds to solve the problem and

22.862 seconds on the iterative updating procedure on the finest grid; while the MCG-

update-six with Gauss-Seidel line solver for the 2D sub-problems took 24.952 seconds

for solving the whole problem and 5.548 seconds for computing sixth-order solutions

for the finest grid points. As to the solution accuracy, though the Iter-update-six

method showed a little bit more accurate than the MCG-update-six method, their

maximum absolute errors for different discretized grids were in the same order of

magnitude. The order of accuracy for the computed solutions from both methods

were close to six as we expected.

Table 3.3 also compares two kinds of 2D sub-problem solver. “MCG-update-

six(2D-line)” used the line Gauss-Seidel iterative method to solve the 2D sub-problems
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and “MCG-update-six(2D-MG)” used the multigrid method with Red Black Gauss-

Seidel relaxation to solve the 2D sub-problems. By using either 2D solver, the MCG-

update-six computed the same accurate solution, which means both methods had

converged when solving the 2D sub-problems. The experimental results show that

the line Gauss-Seidel solver ran a little bit faster than the multigrid method.

Fig. 3.9 describes the relationship between the maximum errors and the total

CPU cost for the two sixth-order methods. It illustrates that the MCG-update-

six(2D-line) method spent less time than the Iter-update-six method to compute a

certain accurate solution. When a solution with high accuracy is required, such as the

maximum error is no more than 10−8, the superiority of the MCG-update-six method

on computational time is apparent.

Similar conclusions are summarized in Table 3.4 when Re = 10. First, the MCG-

update-six method ran faster than the Iter-update-six method and the efficiency ben-

efits were mainly from the new updating strategy. Second, the solution accuracy

obtained from both methods was comparable. Third, both 2D solvers converged in

2D sub-problem solutions and the line Gauss-Seidel solver did slightly faster.

For better understanding, we plotted the updating CPU time in two sixth-order

methods for solving the Problem 1 with Re = 10 on different scale grids in Fig. 3.10.

It is obvious that the MCG updating strategy has higher computational efficiency

and better scalability than the iterative refinement procedure.

Then we tested for large Reynolds number cases (Re = 103 and Re = 104) and

reported numerical results in Table 3.5. We chose Gauss-Seidel line solver for 2D sub-

problems in the MCG-update-six method. From Table 3.5 we find that the MCG-

update-six method has obvious advantages in computational efficiency for difficult

problems with large Reynolds number. For instance, when Re = 104 and n = 128,

the iterative refinement procedure needed 240.833 seconds to update solutions on the

finest grid, while the MCG strategy only took 12.589 seconds. For solving the whole
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Table 3.4: Comparison of the number of iterations, the CPU time in seconds, the max-
imum errors and the order of accuracy between the Iter-update-six method and the
MCG-update-six methods with different 2D sub-problem solvers for solving Problem
1 with Re = 10.

n Method # iteration Total CPU(s) Updating Error Order
CPU(s)

Iter-update-six (9,12), 34 0.005 0.002 1.95e-3 –
8 MCG-update-six(2D-line) (9,12), - 0.006 0.003 8.76e-3 –

MCG-update-six(2D-MG) (9,12), - 0.006 0.003 8.76e-3 –

Iter-update-six (12,13), 46 0.052 0.019 6.13e-5 4.99
16 MCG-update-six(2D-line) (12,13), - 0.051 0.018 2.06e-4 5.41

MCG-update-six(2D-MG) (12,13) - 0.051 0.018 2.06e-4 5.41

Iter-update-six (13,12), 47 0.460 0.182 1.40e-6 5.45
32 MCG-update-six(2D-line) (13,12), - 0.416 0.138 3.69e-6 5.80

MCG-update-six(2D-MG) (13,12), - 0.427 0.149 3.69e-6 5.80

Iter-update-six (12,12), 44 5.089 2.655 2.56e-8 5.76
64 MCG-update-six(2D-line) (12,12), - 3.558 1.121 6.03e-8 5.93

MCG-update-six(2D-MG) (12,12), - 3.643 1.213 6.03e-8 5.93

Iter-update-six (12,11), 40 40.069 20.807 9.70e-10 4.72
128 MCG-update-six(2D-line) (12,11), - 28.387 9.133 1.40e-9 5.43

MCG-update-six(2D-MG) (12,11), - 29.219 9.943 1.40e-9 5.43
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Figure 3.10: Comparison of the updating CPU time and the number of grid intervals
between the Iter-update-six method and the MCG-update-six(2D-line) method for
solving Problem 1 (Re = 10). Each symbol with increasing CPU time corresponds
to an increasing fine grid: 8, 16, 32, 64, and 128 intervals.
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Table 3.5: Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-six method and
the MCG-update-six methods for solving Problem 1 with Re = 103 and Re = 104.

Re n Method # iteration Total CPU(s) Updating Error Order
CPU(s)

16 Iter-update-six (47,67), 91 0.155 0.039 1.07e-2 2.84
MCG-update-six (47,67), - 0.135 0.020 4.21e-2 2.64

32 Iter-update-six (67,87), 96 1.683 0.378 1.05e-3 3.36
103 MCG-update-six (67,87), - 1.452 0.155 3.77e-3 3.48

64 Iter-update-six (87,124), 67 19.950 4,146 3.41e-5 4.94
MCG-update-six (87,124), - 16.788 1.187 1.41e-4 4.74

128 Iter-update-six (124,181), 59 226.062 40.959 7.17e-7 5.57
MCG-update-six (124,181), - 195.657 9.477 2.86e-6 5.62

16 Iter-update-six (54,150), 126 0.288 0.053 1.77e-2 2.20
MCG-update-six (54,150), - 0.253 0.020 5.15e-2 2.35

32 Iter-update-six (150,369), 230 5.898 0.889 3.39e-3 2.38
104 MCG-update-six (150,369), - 5.150 0.181 8.46e-3 2.61

64 Iter-update-six (369,382), 348 68.695 20.755 4.90e-4 2.79
MCG-update-six (369,382), - 48.987 1.679 1.01e-3 3.07

128 Iter-update-six (382,360), 422 671.852 240.833 3.55e-5 3.79
MCG-update-six (382,360), - 389.847 12.589 7.24e-5 3.80

problem, the Iter-update-six method spent 671.852 seconds while the MCG-update-

six method took 389.847 seconds, which denotes that, compared to the Iter-update-

six method, the proposed sixth-order method is able to save 40% computing time

for solving this difficult problem. And we also note that the magnitude of Reynolds

number affected the computed solution accuracy inversely. The reason lies in the

effects of high Reynolds number on the fourth-order and sixth-order truncation error

terms from the FOC scheme. More details about the analysis of such affects can be

referred to [81].

3.4.2 Test problem 2

The second test case is from a test problem of Gupta and Zhang’s high accuracy

multigrid solution of the 3D convection-diffusion equation [36], which can be written
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Table 3.6: Comparison of the number of iterations, the CPU time in seconds, the max-
imum errors and the order of accuracy between the Iter-update-six method and the
MCG-update-six methods with different 2D sub-problem solvers for solving Problem
2 with Re = 10.

n Method # iteration Total CPU(s) Updating Error Order
CPU(s)

Iter-update-six (9,12), 28 0.005 0.001 2.17e-4 -
8 MCG-update-six(2D-line) (9,12), - 0.007 0.003 5.96e-4 -

MCG-update-six(2D-MG) (9,12) - 0.007 0.003 5.96e-4 -

Iter-update-six (12,12), 36 0.046 0.014 5.86e-6 5.21
16 MCG-update-six(2D-line) (12,12), - 0.056 0.025 1.46e-5 5.35

MCG-update-six(2D-MG) (12,12) - 0.057 0.026 1.46e-5 5.35

Iter-update-six (12,12), 35 0.411 0.136 1.24e-7 5.56
32 MCG-update-six(2D-line) (12,12), - 0.459 0.187 2.85e-7 5.68

MCG-update-six(2D-MG) (12,12), - 0.469 0.197 2.85e-7 5.68

Iter-update-six (12,11), 30 4.715 2.382 2.44e-9 5.68
64 MCG-update-six(2D-line) (12,11), - 3.821 1.524 5.11e-9 5.80

MCG-update-six(2D-MG) (12,11), - 3.858 1.567 5.11e-9 5.80

Iter-update-six (11,11), 25 34.960 15.959 2.41e-10 3.34
128 MCG-update-six(2D-line) (11,11), - 30.967 11.940 2.75e-10 4.23

MCG-update-six(2D-MG) (11,11), - 32.010 12.668 2.75e-10 4.23

as 
u(x, y, z) = xyz(1− x)(1− y)(1− z)exp(x+ y + z)
p(x, y, z) = Re sin y sin z cosx
q(x, y, z) = Re sinx sin z cos y
r(x, y, z) = Re sinx sin y cos z

.

First, we used the point relaxation smoothers in the MSMG computation and

tested a diffusion-dominant equation with a small Reynolds number (Re=10). The

numerical comparison on two strategies were listed in Table 3.6. When the number

of intervals was relatively small (n 6 32), the Iter-update-six method yielded better

performance. When n became large, the MCG-update-six method ran faster and

kept comparable solution accuracy. Therefore, the proposed method is a scalable

computational strategy. As for the 2D sub-problem solvers in the MCG-update-six

method, both methods converged and the line Gauss-Seidel solver consistently showed

a little bit superiority in computational efficiency.

Then we compared two methods in solving some convection-dominated equations.

We chose the line Gauss-Seidel solver for 2D sub-problems in the MCG-update-six
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Table 3.7: Comparison of the number of iterations, the CPU time in seconds, the
maximum errors and the order of accuracy between the Iter-update-six method and
the MCG-update-six methods for solving Problem 2 with Re = 103 and Re = 104.

Re n Method # iteration Total CPU(s) Updating Error Order
CPU(s)

16 Iter-update-six (52,67), 72 0.147 0.030 7.93e-3 2.55
MCG-update-six (52,67), - 0.144 0.027 1.32e-2 2.62

32 Iter-update-six (67,83), 72 1.588 0.286 2.88e-4 4.78
103 MCG-update-six (67,83), - 1.450 0.201 6.98e-4 4.24

64 Iter-update-six (83,117), 51 18.975 3.904 4.72e-6 5.93
MCG-update-six (83,117), - 16.381 1.547 1.95e-5 5.16

128 Iter-update-six (117,170), 45 204.996 27.525 1.05e-7 5.49
MCG-update-six (117,170), - 189.660 12.343 4.18e-7 5.54

16 Iter-update-six (63,189), 97 0.335 0.041 1.19e-2 1.81
MCG-update-six (63,189), - 0.320 0.027 1.72e-2 2.18

32 Iter-update-six (189,401), 166 6.082 0.644 3.16e-3 1.91
104 MCG-update-six (189,401), - 5.658 0.224 3.51e-3 2.29

64 Iter-update-six (401,358), 235 64.733 18.654 3.06e-4 3.37
MCG-update-six (401,358), - 47.213 1.912 3.28e-4 3.42

128 Iter-update-six (358,342), 277 525.251 161.614 6.12e-6 5.64
MCG-update-six (358,342), - 373.307 14.621 8.45e-6 5.28

method. Numerical results for Re = 103 and Re = 104 are described in Table 3.7

and Fig. 3.11. It is visible that the proposed method performed better on scalability

and efficiency when we increased the number of grid intervals, especially for the prob-

lem with large Reynolds numbers. For instance, when Re = 104 and n = 128, the

MCG-update-six method took nearly 30% less total CPU time than the Iter-update-

six method to compute a solution with the same magnitude error. The improvement

is from the new MCG updating strategy, which can be used to eliminate the itera-

tive refinement procedure for high accuracy solution computation on the finest grid.

The CPU time saved by the MCG updating strategy is displayed in the column of

“Updating CPU” in Table 3.7. Again, the experimental results show that for large

magnitude of Reynolds number, the convergence and the computed accuracy were

severely degraded.
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Figure 3.11: Comparison of the maximum absolute errors and the CPU time for
solving Problem 2 (Re = 104). Each symbol with increasing CPU time corresponds
to an increasing fine grid: 16, 32, 64, and 128 intervals.

3.5 Concluding Remarks

We improved the sixth-order compact computation for the 3D convection-diffusion

equation. A new fine grid updating strategy based on the MCG computation is

proposed, which can replace the iterative refinement procedure on the finest grid

in the current MSMG method for the sixth-order compact approximation. We also

derived a 19-point FOC scheme with unequal mesh-size for the 3D convection-diffusion

equation. An algorithm is given to describe our sixth-order compact computation for

the 3D convection-diffusion equation by using the MSMG method with the MCG

updating strategy and the Richardson extrapolation technique.

The numerical results show that the MSMG method with the MCG updating

strategy is more cost-effective than the MSMG method with the iterative refinement

procedure to compute solutions with comparable accuracy. The proposed method

also demonstrates a better scalability for problems with a large number of unknowns.
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In addition, the MCG updating strategy supports concurrency and has good potential

for parallelization.

Copyright c⃝ Ruxin Dai 2014
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4 Sixth-Order Solution with Completed Richardson Extrapolation for
Steady-State Equations

4.1 Introduction

In this chapter, we consider another type of Richardson extrapolation-based sixth-

order method, which uses the completed Richardson extrapolation technique to pro-

duce sixth-order solutions at all fine grid points. The completed Richardson extrapola-

tion was first developed by Roache and Knupp [60] to produce a fourth-order solution

on the fine grid. They did not use the extrapolated fourth-order solution but rather

the correction between the second-order solution and the fourth-order solution in the

interpolation process. Here, we borrow the idea from the completed Richardson ex-

trapolation and similarly use the correction between the fourth-order solution and the

extrapolated sixth-order solution rather than the extrapolated sixth-order solution to

obtain a sixth-order solution on the entire fine grid. Since the completed Richardson

extrapolation procedure neither requires special treatment for near-boundary points,

nor involves significant computational cost, we can expect to reach high efficiency at

the same time.

Consider a 1D uniform fine grid j = 0, 1, 2, ... with mesh-size h on which a fourth-

order solution is computed by some FOC scheme. A separate fourth-order solution

on the subgrid (coarse grid) with mesh-size 2h of even points j = 0, 2, 4... can also

be computed. By applying Richardson extrapolation, a sixth-order solution on the

subgrid of even-numbered grid points j = 0, 2, 4, ... is obtained. We want to obtain

a sixth-order solution on the fine grid points which were skipped in the Richardson

extrapolation process, i.e., the odd-numbered grid points j = 1, 3, 5, ... Instead of

seeking some appropriate interpolation on the extrapolated sixth-order solution [69],

the difference between the fourth-order solution and the extrapolated sixth-order

solution can be utilized.

Let u∗
j be the exact solution at grid point j, uh

j be the fine grid fourth-order
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solution, and u2h
j be the subgrid fourth-order solution. The extrapolated sixth-order

solution ũj is obtained on the odd-numbered grid points by Richardson extrapolation

as

ũj =
16

15
uh
j −

1

15
u2h
j . j = even

This extrapolation can be conveniently expressed in terms of cj, the correction from

the fourth-order solution to the sixth-order solution, as

ũj = uh
j + cj, j = even (4.1)

where

cj =
1

15
(uh

j − u2h
j ). j = even (4.2)

This cj can be considered a fourth-order accurate error estimator.

The solution accuracy has the definition of

u∗
j = uh

j + Ajh
4 +O(h5+m), j = even (4.3)

u∗
j+1 = uh

j+1 + Aj+1h
4 +O(h5+m), (4.4)

u∗
j+2 = uh

j+2 + Aj+2h
4 +O(h5+m), (4.5)

where the As are the coefficients of the leading error terms, which vary spatially and is

independent of h. By using simple two-point linear interpolation on smooth solutions,

we have

Aj+1 = 1/2(Aj + Aj+2) +O(h2). j + 1 = odd (4.6)

Increasing the order of this interpolation will not improve the order of the overall

method since the accuracy is limited by the error terms of O(h5+m).

Evaluating Aj for even-numbered points from Eq. (4.3) gives

Aj =
1

h4
[u∗

j − uh
j +O(h5+m)]. j = even (4.7)

The sixth-order solution is defined as

u∗
j = ũj +O(h6). j = even (4.8)
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Substituting (4.8) into (4.7) obtains

Aj =
1

h4
[ũj − uh

j +O(h5+m)]. j = even (4.9)

Similarly,

Aj+2 =
1

h4
[ũj+2 − uh

j+2 +O(h5+m)]. j = even (4.10)

Using (4.9) and (4.10) in (4.6) gives

Aj+1 =
1

2h4
[ũj − uh

j + ũj+2 − uh
j+2 +O(h5+m)]. j + 1 = odd (4.11)

This defines the completed Richardson extrapolation method.

For clarity we can write the correction cj of (4.1) from the fourth-order solution

to the (5 +m)th order solution as

cj = ũj − uh
j . j = even (4.12)

Eq. (4.12) is the correction of the original Richardson extrapolation. Then at the

odd-numbered fine grid points, not covered by the the original Richardson extrapo-

lation, the correction from the fourth-order solution to the (5 +m)th order solution

is approximated by

ũj+1 = uh
j+1 + cj+1, j + 1 = odd

where

cj+1 =
1

2
(cj + cj+2). j + 1 = odd

The second error term of the fourth-order solution, O(h5+m) in Eq. (4.3), will limit the

accuracy of the completed Richardson extrapolation. When using the FOC scheme

Eq.(1.7), there is no fifth-order error term and thus the completed Richardson ex-

trapolation can obtain the sixth-order accurate solution.

4.2 Sixth-Order Solution with Completed Richardson Extrapolation for
2D Problems

For 2D problems, let u∗
i,j be the exact solution at fine grid point (i, j), uh

i,j be the

fourth-order solution at fine grid point (i, j) with mesh-size h, and u2h
i,j be the fourth-
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order solution at coarse grid point (i, j) with mesh-size 2h. Then the Richardson

extrapolation formula

ũ2h
i,j =

(16uh
2i,2j − u2h

i,j)

15
(4.13)

is used to compute the sixth-order solution ũ2h
i,j on the coarse grid.

By using direct interpolation, the sixth-order solution ũh
2i,2j at fine grid point

(2i, 2j) is obtained from the extrapolated sixth-order solution ũ2h
i,j at coarse grid point

(i, j). Then we can write

ũh
2i,2j =

16

15
uh
2i,2j −

1

15
u2h
i,j. (4.14)

We rewrite the extrapolation in terms of ch2i,2j, the correction from the fourth-order

solution to the sixth-order solution for (even, even) fine grid points, as

ũh
2i,2j = uh

2i,2j + ch2i,2j, (4.15)

where

ch2i,2j =
1

15
(uh

2i,2j − u2h
i,j).

Then, we consider (odd, odd) fine grid points. If we use Eq. (2.10) to compute

fourth-order accurate solutions, we have

u∗
i,j = uh

i,j + Ai,jh
4 +O(h6), i = odd, j = odd (4.16)

u∗
i+1,j+1 = uh

i+1,j+1 + Ai+1,j+1h
4 +O(h6), (4.17)

u∗
i+1,j−1 = uh

i+1,j−1 + Ai+1,j−1h
4 +O(h6), (4.18)

u∗
i−1,j+1 = uh

i−1,j+1 + Ai−1,j+1h
4 +O(h6), (4.19)

u∗
i−1,j−1 = uh

i−1,j−1 + Ai−1,j−1h
4 +O(h6), (4.20)

where As are the coefficients of the leading error terms, which vary spatially and is

independent of h.

By using rotated grid interpolation on smooth solutions, as Fig. 4.1(a), we have

Ai,j =
1

4
(Ai+1,j+1 + Ai+1,j−1 + Ai−1,j+1 + Ai−1,j−1) +O(h2) (4.21)
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for (odd, odd) fine grid points. Since there is an h4 term with the A in Eq. (4.16), a

second-order interpolation of A is enough to achieve the order of six accuracy.

Evaluating Ai+1,j+1 from Eq. (4.17) gives

Ai+1,j+1 =
1

h4
[u∗

i+1,j+1 − uh
i+1,j+1 +O(h6)]. (4.22)

Since the fine grid points (i + 1, j + 1) (i = odd, j = odd) are (even, even) fine grid

points with sixth-order solutions, we have

u∗
i+1,j+1 = ũh

i+1,j+1 +O(h6). (4.23)

Substituting Eq. (4.23) into Eq. (4.22), we obtain

Ai+1,j+1 =
1

h4
[ũh

i+1,j+1 − uh
i+1,j+1 +O(h6)]. (4.24)

Similarly, for Ai+1,j−1, Ai−1,j+1, and Ai−1,j−1 from Eqs. (4.18), (4.19) and (4.20) we

obtain

Ai+1,j−1 =
1

h4
[ũh

i+1,j−1 − uh
i+1,j−1 +O(h6)], (4.25)

Ai−1,j+1 =
1

h4
[ũh

i−1,j+1 − uh
i−1,j+1 +O(h6)], (4.26)

Ai−1,j−1 =
1

h4
[ũh

i−1,j−1 − uh
i−1,j−1 +O(h6)]. (4.27)

Using Eqs. (4.24) ∼ (4.27) in Eq. (4.21) gives

Ai,j =
1

4h4
[(ũh

i+1,j+1 − uh
i+1,j+1) + (ũh

i+1,j−1 − uh
i+1,j−1)

+ (ũh
i−1,j+1 − uh

i−1,j+1) + (ũh
i−1,j−1 − uh

i−1,j−1) +O(h6)]. (4.28)

Substituting Eq. (4.28) into Eq. (4.16) gives

u∗
i,j = uh

i,j +
1

4
[(ũh

i+1,j+1 − uh
i+1,j+1) + ũh

i+1,j−1 − uh
i+1,j−1)

+ (ũh
i−1,j+1 − uh

i−1,j+1) + (ũh
i−1,j−1 − uh

i−1,j−1)] +O(h6). (4.29)

Since we have Eq. (4.15) for (even, even) fine grid points, we can compute sixth-order

solutions for (odd, odd) fine grid points by Eq. (4.29) as

ũh
i,j = uh

i,j + chi,j, i = odd, j = odd (4.30)
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(i−1, j+1)

(i−1, j−1)

(i, j)

(i+1, j+1)

(i+1, j−1)

(a) Rotated grid interpolation scheme.

(i−1, j) (i, j) (i+1, j)

(i, j+1)

(i, j−1)

(b) Standard grid interpolation scheme.

Figure 4.1: Illustration of the interpolation strategy in 2D.

where

chi,j =
1

4
(chi+1,j+1 + chi+1,j−1 + chi−1,j+1 + chi−1,j−1).

By now, we have obtained corrections from the fourth-order solution to the sixth-

order solution for (even, even) and (odd, odd) fine grid points, which can be viewed

as fourth-order accurate error estimators. We use them to generate fourth-order

accurate error estimators for (even, odd) and (odd, even) fine grid points.

By using standard grid interpolation on smooth solutions, as Fig. 4.1(b), we have

Ai,j =
1

4
(Ai+1,j + Ai−1,j + Ai,j+1 + Ai,j−1) +O(h2) (4.31)

for (odd, even) and (even, odd) fine grid points.

Analogously, we can generate correction terms to obtain the computation formula for

sixth-order solutions as

ũh
i,j = uh

i,j + chi,j, i = odd, j = even

i = even, j = odd (4.32)

where

chi,j =
1

4
(chi+1,j + chi−1,j + chi,j+1 + chi,j−1).
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Since another two grid interpolations are involved, i.e., Eqs. (4.21) and (4.31),

the error on the (odd, odd), (odd, even) and (even, odd) fine grid points will be larger

than that on the (even, even) fine grid points, though still be O(h6).

4.3 Extension to 3D Problems

For 3D problems, we have the Richardson extrapolation formula

ũ2h
i,j,k =

(16uh
2i,2j,2k − u2h

i,j,k)

15
(4.33)

to compute the sixth-order solutions at (even, even, even) fine grid points. We can

analogously use the correction between the fourth-order solution and the extrapolated

sixth-order solution at (even, even, even) fine grid points to construct the fourth-order

error estimators for other groups of fine grid points. Thus, we have the following

formulas for the computation of the sixth-order solution as

ũh
i,j,k = uh

i,j,k + chi,j,k (4.34)

where

chi,j,k=
1

15
(uh

2i,2j,2k − u2h
i,j,k), i = even, j = even, k = even

chi,j,k=
1

2
(chi,j,k−1 + ci,j,k+1), i = even, j = even, k = odd

chi,j,k=
1

2
(chi,j−1,k + ci,j+1,k), i = even, j = odd, k = even

chi,j,k=
1

2
(chi−1,j,k + ci+1,j,k), i = odd, j = even, k = even

chi,j,k=
1

4
(chi,j−1,k−1 + chi,j−1,k+1 + chi,j+1,k−1 + chi,j+1,k+1), i = even, j = odd, k = odd

chi,j,k=
1

4
(chi−1,j,k−1 + chi−1,j,k+1 + chi+1,j,k−1 + chi+1,j,k+1), i = odd, j = even, k = odd

chi,j,k=
1

4
(chi−1,j−1,k + chi−1,j+1,k + chi+1,j−1,k + chi+1,j+1,k), i = odd, j = odd, k = even

chi,j,k=
1

8
(chi−1,j−1,k−1 + chi−1,j−1,k+1 + chi−1,j+1,k−1

+ chi−1,j+1,k+1 + chi+1,j−1,k−1 + chi+1,j−1,k+1

+ chi+1,j+1,k−1 + chi+1,j+1,k+1). i = odd, j = odd, k = odd
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4.4 Numerical Results

In this section, we tested the sixth-order method with completed Richardson extrap-

olation and compared it with Wang-Zhang’s sixth-order method [79, 80] in accuracy

and efficiency experimentally. The codes were written in Fortran 77 programming

language and run on one login grid point of Lipscomb HPC Cluster at the University

of Kentucky. The grid point has Dual Intel E5-2670 8 Core (totally 16 cores) with

2.6GHz and 128GB RAM.

Since the proposed sixth-order method is based on Richardson extrapolation, it

can also be integrated into the MSMG computation for the purpose of high compu-

tational efficiency. We used standard V(1,1)-cycle algorithm in the MSMG computa-

tion. The initial guess for the V-cycle on Ω4h was the zero vector. The V-cycles on

Ω2h and Ωh stopped when the L2-norm of the difference of the successive solutions

was reduced by a factor of 1010. The iterative operator based interpolation procedure

stopped when the L2-norm of the correction vector of the approximate solution was

less than 10−10. All of the errors reported were the maximum absolute errors over

the finest grid.

4.4.1 Test problems

We chose a 2D Poisson equation and a 3D convection-diffusion equation with small

Reynolds number (Re) as test problems. For the 2D test problem, the 9-point FOC

scheme (2.9) was used to compute fourth-order solutions on different scaled grids. For

the 3D test problem, the 19-point finite difference scheme (3.7) was used to compute

different discretized fourth-order solutions.

Problem 1.

−∂2u

∂x2
− ∂2u

∂y2
= 2π2 sin(πx) cos(πy), (x, y) ∈ Ω = [0, 4]× [0, 1], (4.35)

which has the Dirichlet boundary condition.
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The analytical solution is

u(x, y) = sin(πx) cos(πy).

Problem 2.

uxx + uyy + uzz + p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz = f(x, y, z),

(x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1], (4.36)

where the coefficients of Eq. (4.36) are set as

p(x, y, z) = q(x, y, z) = r(x, y, z) = Re.

The analytical solution is

u(x, y, z) = cos(4x+ 6y + 8z).

4.4.2 Accuracy and efficiency

In order to test accuracy and efficiency of the proposed method, we refined the grid

from N = 32 to N = 256 for Problem 1 and from N = 16 to N = 128 for Problem 2,

where N is the number of intervals in one coordinate direction. For convenience, in

the comparison between the two Richardson extrapolation-based sixth-order methods,

we use the following abbreviations: “Op-Six” is short for Wang-Zhang’s sixth-order

method with Richardson extrapolation and iterative operator based interpolation

[79, 80]; “CR-Six” denotes the present sixth-order method with completed Richardson

extrapolation.

Maximum errors, the computed accuracy order and CPU time in seconds are listed

in Table 4.1. The solutions from both methods can achieve sixth-order accuracy. The

column error shows that, for both test problems, the computed solutions from the CR-

Six method are slightly more accurate than that from the Op-Six method. Table 4.1

also shows that the CR-Six method requires less CPU time than the Op-Six method to
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Table 4.1: Numerical comparison between the sixth-order method with Richardson
extrapolation and iterative operator based interpolation and the sixth-order method
with completed Richardson extrapolation

Test Problem 1 N Error Order CPU(s)
Op-Six 32 2.498e-6 - 0.007

64 4.582e-8 5.77 0.031
128 7.662e-10 5.90 0.124
256 1.234e-11 5.96 0.491

CR-Six 32 8.927e-7 - 0.004
64 1.362e-8 6.03 0.022
128 2.105e-10 6.02 0.090
256 3.270e-12 6.01 0.393

Test Problem 2 (Re=10) N Error Order CPU(s)
Op-Six 16 3.547e-4 - 0.021

32 9.234e-6 5.26 0.159
64 1.764e-7 5.71 0.907
128 3.062e-9 5.85 5.576

CR-Six 16 1.595e-4 - 0.013
32 2.517e-6 5.99 0.108
64 3.842e-8 6.03 0.732
128 9.324e-10 5.36 3.872

compute solutions with comparable accuracy. The higher computational efficiency of

the CR-Six method is due to the avoidance of using the iterative refinement procedure

appeared in the Op-Six method, which has a low convergence rate and thus takes a

certain amount of CPU time.

4.5 Concluding Remarks

We presented the sixth-order compact approximation with completed Richardson ex-

trapolation and compared it with an existing Richardson extrapolation-based sixth-

order method with iterative operator based interpolation. With respect to accuracy,

the proposed method is able to obtain sixth-order solutions with smaller errors. As

expected, the computational efficiency of the proposed method is higher by eliminat-

ing the iterative refinement procedure on the finest grid.

Copyright c⃝ Ruxin Dai 2014
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5 Analysis and Comparison of Richardson Extrapolation-based
Sixth-Order Methods

5.1 Introduction

Until now, we have learned that Richardson extrapolation can improve the solution

accuracy of PDEs by using approximate solutions from two different scale grids. To

explicitly obtain a sixth-order solution using Richardson extrapolation, we need to

have two computed fourth-order solutions on the coarse and fine grids, respectively.

For this purpose, fourth-order compact schemes and multigrid methods are typically

used. Then, the Richardson extrapolation technique can be applied to compute a

sixth-order solution on the coarse grid. Other techniques are needed to obtain a

sixth-order solution on the fine grid. In this dissertation, we have discussed three

techniques for computing fine grid sixth-order solutions (operator based interpola-

tion, multiple coarse grid (MCG) updating strategy, and completed Richardson ex-

trapolation), which lead to three kinds of Richardson extrapolation-based sixth-order

methods. In this chapter, we will analyze the truncation error terms of these three

methods for solving a 2D Poisson equation, and thus compare their accuracy theo-

retically. Numerical experiments of several test problems are also conducted.

5.2 Truncation Error Analysis

Consider the 2D Poisson equation of the form

uxx(x, y) + uyy(x, y) = f(x, y), (x, y) ∈ Ω, (5.1)

where Ω is a rectangular domain, with suitable boundary conditions defined on ∂Ω.

The solution u(x, y) and the forcing function f(x, y) are assumed to be sufficiently

smooth and have required continuous partial derivatives.

All the Richardson extrapolation-based sixth-order methods use the FOC scheme

(2.8) to compute fourth-order solutions of Eq. (5.1) on two level discretized grids.
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For illustration, we first derive the truncation error of the FOC scheme with unequal

mesh-size discretization for solving Eq. (5.1).

Denote ∆x and ∆y to be the mesh-sizes in the x and y coordinate directions,

respectively. The standard second-order central difference operators are

δ2xui,j =
ui+1,j − 2ui,j + ui−1,j

∆x2
, δ2yui,j =

ui,j+1 − 2ui,j + ui,j−1

∆y2
.

By using Taylor series, we have

δ2xui,j = uxx +
∆x2

12
ux4 +

∆x4

360
ux6 +

∆x6

20160
ux8 +O(∆x8), (5.2)

and

δ2yui,j = uyy +
∆y2

12
uy4 +

∆y4

360
uy6 +

∆y6

20160
uy8 +O(∆y8). (5.3)

From Eqs. (5.2) and (5.3) we can discretize Eq. (5.1) at the grid point xi,j as

δ2xui,j + δ2yui,j = fi,j +
1

12
(∆x2ux4 +∆y2uy4)

+
1

360
(∆x4ux6 +∆y4uy6) +

1

20160
(∆x6ux8 +∆y6uy8) +O(∆8). (5.4)

By taking two times partial derivatives of x and y on both sides of Eq. (5.1), respec-

tively, we have

ux4 = fxx − uyyxx, (5.5)

and

uy4 = fxx − uxxyy. (5.6)

Using central difference operators and Taylor series in Eqs. (5.5) and (5.6) gives

(ux4)i,j = δ2xfi,j −
1

∆y2
(δ2xui,j+1 − 2δ2xui,j + δ2xui,j−1)

− ∆x2

12
fx4 − ∆x4

360
fx6 − 1

∆y2
(−∆x2

12
(∆y2ux4y2 +

∆y4

12
ux4y4)−

∆x4

360
∆y2ux6y2)

+
∆y2

12
ux2y4 +

∆y4

360
ux2y6 +O(∆6), (5.7)
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and

(uy4)i,j = δ2yfi,j −
1

∆x2
(δ2yui+1,j − 2δ2yui,j + δ2yui−1,j)

− ∆y2

12
fy4 −

∆y4

360
fy6 −

1

∆x2
(−∆y2

12
(∆x2ux2y4 +

∆x4

12
ux4y4)−

∆y4

360
∆x2ux2y6)

+
∆x2

12
ux4y2 +

∆x4

360
ux6y2 +O(∆6). (5.8)

By continuously taking partial derivatives of x on both sides of Eq. (5.5), we have

fx4=ux6 + ux4y2 , (5.9)

fx6=ux8 + ux6y2 . (5.10)

Similarly, by continuously taking partial derivatives of y on both sides of Eq. (5.6),

we have

fy4=uy6 + ux2y4 , (5.11)

fy6=uy8 + ux2y6 . (5.12)

Substituting Eqs. (5.9) and (5.10) in Eq. (5.7) gives

(ux4)i,j = δ2xfi,j −
1

∆y2
(δ2xui,j+1 − 2δ2xui,j + δ2xui,j−1)

− ∆x2

12
ux6 − ∆y2

12
ux2y4 +

∆x2∆y2

144
ux4y4 −

∆x4

360
ux8 − ∆y4

360
ux2y6 +O(∆6).

(5.13)

And, substituting Eqs. (5.11) and (5.12) in Eq. (5.8) gives

(uy4)i,j = δ2yfi,j −
1

∆x2
(δ2yui+1,j − 2δ2yui,j + δ2yui−1,j)

− ∆y2

12
uy6 −

∆x2

12
ux4y2 +

∆x2∆y2

144
ux4y4 −

∆y4

360
uy8 −

∆x4

360
ux6y2 +O(∆6).

(5.14)

Then, using Eqs. (5.13) and (5.14) to replace the ux4 and uy4 terms in Eq. (5.4) gives

δ2xui,j + δ2yui,j = fi,j +
1

12
(∆x2δ2xfi,j +∆y2δ2yfi,j)

− 1

12
(
∆x2

∆y2
(δ2xui,j+1 − 2δ2xui,j + δ2xui,j−1) +

∆y2

∆x2
(δ2yui+1,j − 2δ2yui,j

+ δ2yui−1,j)) + (τ4)i,j + (τ6)i,j +O(∆8), (5.15)
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where

(τ4)i,j =
1

144
(ux4y2 + ux2y4)∆x2∆y2 − 1

240
(ux6∆x4 + uy6∆y4),

(τ6)i,j =
1

1728
(∆x4∆y2 +∆x2∆y4)ux4y4 +

1

4320
(∆x2∆y4ux2y6 +∆x4∆y2ux6y2)

− 11

60480
(∆x6ux8 +∆y6uy8).

Let us use the second-order central difference operators in Eq. (5.15) and multiply

6∆x2 on both sides, and denote the mesh aspect ratio λ = ∆x
∆y

, we obtain a general

FOC scheme like the one presented in [93] as

m1(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1) +m2(ui,j+1 + ui,j−1)

+m3(ui+1,j + ui−1,j)−m4ui,j

=
∆x2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1), (5.16)

where the coefficients are

m1 = (1 + λ2)/2, m2 = 5λ2 − 1, m3 = 5− λ2, m4 = 10(1 + λ2).

The fourth-order truncation error of the FOC scheme (5.16) is

τ̃4 = {
1

24λ2
(ux4y2 + ux2y4)−

1

40
(ux6 +

uy6

λ4
)}∆x4. (5.17)

And, the sixth-order truncation error of the FOC scheme (5.16) is

τ̃6 = {
1

288
(
1

λ2
+

1

λ4
)ux4y4 +

1

720
(
ux2y6

λ4
+

ux6y2

λ2
)

− 11

10080
(ux8 +

uy8

λ6
)}∆x6. (5.18)

Consider a special case with ∆x = ∆y = h, the FOC scheme has the form as

ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 + 4(ui,j+1 + ui,j−1 + ui+1,j + ui−1,j)− 20ui,j

=
h2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1). (5.19)
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The fourth-order and sixth-order truncation errors of the FOC scheme (5.19) are

τFOC4 = {
1

24
(ux4y2 + ux2y4)−

1

40
(ux6 + uy6)}h4, (5.20)

τFOC6 = {
1

144
ux4y4 +

1

720
(ux2y6 + ux6y2)−

11

10080
(ux8 + uy8)}h6. (5.21)

Now we can take a look at the truncation error after applying Richardson extrap-

olation. From the definition of the fourth-order solutions on the fine and coarse grids,

we have

u∗
h=u4

h + τFOC4 + τFOC6, (5.22)

u∗
2h=u4

2h + 16τFOC4 + 64τFOC6. (5.23)

Using the Richardson extrapolation formula (4.13) gives

u∗
2h = u6

2h −
16

5
τFOC6. (5.24)

Thus, the sixth-order truncation error after applying Richardson extrapolation has

the form as

τExtrapo = −
16

5
τFOC6. (5.25)

For all Richardson extrapolation-based sixth-order compact approximations, Richard-

son extrapolation is always used to obtain the sixth-order solution on the standard

coarse grid and the extrapolated solution is directly interpolated to the correspond-

ing (even, even) fine grid points. Therefore, the truncation error of (even, even) fine

grid points is τExtrapo. For (odd, odd), (even, odd) and (odd, even) fine grid points,

three computational strategies (iterative operator based interpolation, MCG updaitng

strategy, and completed Richardson extrapolation) are used to obtain sixth-order so-

lutions. In the following part, truncation error analysis for these three strategies are

given.

5.2.1 Truncation error of iterative operator based interpolation

In order to obtain sixth-order solutions for the remaining fine grid points, Wang and

Zhang [79, 80] proposed an operator based interpolation scheme to iteratively update
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the fine grid point solutions in a specific sequence until some convergence condition

is satisfied. The operator based interpolation for the 2D Poisson equation (5.1) can

be obtained from Eq. (5.19) as

ũh
i,j = −

1

20
[Fi,j−4(uh

i+1,j+uh
i−1,j+uh

i,j+1+uh
i,j−1)−(uh

i+1,j+1+uh
i+1,j−1+uh

i−1,j+1+uh
i−1,j−1)],

(5.26)

where Fi,j = 8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1.

The leading truncation error of Eq. (5.26) comes from τFOC4 and has the form as

τop = τFOC4
h2

20
=

1

20
{ 1
24

(ux4y2 + ux2y4)−
1

40
(ux6 + uy6)}h6. (5.27)

The operator based interpolation Eq. (5.26) can be written as

u∗
i,j = ũi,j + τOp

= − 1

20
[Fi,j − 4(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)

− (ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)] + τop. (5.28)

In order to find the truncation error of other three groups of fine grid points after the

iterative refinement procedure with the operator based interpolation scheme (5.26),

we assume the truncation error of (odd, odd), (odd, even) and (even, odd) fine grid

points as αop, βop and γop, respectively. A system on the errors of different groups of

fine grid points is generated through Eq. (5.28) as
20αop − 4(γop + γop + βop + βop)− 4τExtrapo = 20τop, i=odd, j=odd

20βop − 4(τExtrapo + τExtrapo + αop + αop)− 4γop = 20τop, i=odd, j=even

20γop − 4(αop + αop + τExtrapo + τExtrapo)− 4βop = 20τop. i=even, j=odd

(5.29)

From Eq. (5.29), we get
αop = τExtrapo +

10
3
τop, i=odd, j=odd

βop = τExtrapo +
35
12
τop, i=odd, j=even

γop = τExtrapo +
35
12
τop. i=even, j=odd

(5.30)
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5.2.2 Truncation error of MCG updating strategy

In the MCG updating strategy for solving the 2D Poisson equation [16], the X-odd

and Y-odd grid views are constructed to compute sixth-order solutions for (odd, even)

and (even, odd) fine grid points, respectively. The X-odd grid view, composed by

(even, even) and (odd, even) fine grid points, is a view of unequal mesh-size grid with

mesh-sizes h and 2h in the x and y coordinate directions, respectively. The Y-odd

grid view, composed by (even, even) and (even, odd) fine grid points, is a view of

unequal mesh-size grid with mesh-sizes 2h and h in the x and y coordinate directions,

respectively. The sixth-order computations on the X-odd grid view and the Y-odd

grid view by solving tridiagonal systems lead to sixth-order truncation errors τx−odd

and τy−odd, respectively. By using the general fourth-order truncation error expressed

by Eq. (5.17) and setting corresponding mesh aspect ratio λ, we have an explicit

form of τx−odd and τy−odd as{
τx−odd = {4× 1

24
(ux4y2 + ux2y4)− 1

40
(ux6 + 16× uy6)}h6, λx−odd =

1
2

τy−odd =
1
16
× {4× 1

24
(ux4y2 + ux2y4)− 1

40
(16× ux6 + uy6)}(2h)6. λy−odd = 2

(5.31)

For the computation of (odd, even) fine grid points on the X-odd grid view, the

mesh aspect ratio λx−odd =
1
2
and the coefficients in Eq. (5.16) are set as

m1 =
5
8
, m2 =

1
4
, m3 =

19
4
, m4 =

50
4
.

Denote the truncation error of (odd, even) fine grid points as αmcg. An equation on

the error of X-odd grid view points, not the solution, is generated by Eq. (5.16) with

above coefficients as

5

8
×4τExtrapo+

1

4
×(αmcg+αmcg)+

19

4
×(τExtrapo+τExtrapo)−

50

4
αmcg = −τx−odd. (5.32)

From Eq. (5.32), we get

αmcg = τExtrapo +
τx−odd

12
. (5.33)
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For the computation of (even, odd) fine grid points on the Y-odd grid view, the

mesh aspect ratio λy−odd = 2 and the coefficients in Eq. (5.16) are set as

m1 =
5
2
, m2 = 19, m3 = 1, m4 = 50.

Denote the truncation error of (even, odd) fine grid points as βmcg. An equation on

the error of Y-odd grid view points, not the solution, by using the Eq. (5.16) with

above coefficients is generated as

5

2
×4τExtrapo+19×(τExtrapo+τExtrapo)+1×(βmcg+βmcg)−50βmcg = −τy−odd. (5.34)

From Eq. (5.34), we get

βmcg = τExtrapo +
τy−odd

48
. (5.35)

The update of (odd, odd) fine grid points uses the operator based interpolation

Eq.(5.26) and (even, even), (odd, even) and (even, odd) fine grid points with sixth-

order solutions. Denote the truncation error of (odd, odd) fine grid points as γmcg. An

equation on the error of fine grid points is generated by Eq. (5.28) as

4τExtrapo + 4× (αmcg + αmcg) + 4× (βmcg + βmcg)− 20γmcg = −20τop. (5.36)

From Eq. (5.36), we get

γmcg = τExtrapo +
τx−odd

30
+

τy−odd

120
+ τop. (5.37)

5.2.3 Truncation error of completed Richardson extrapolation

Completed Richardson extrapolation uses the correction between the fourth-order

solution and the extrapolated sixth-order solution to obtain a sixth-order solution

on the entire fine grid [15]. In the sixth-order method with completed Richardson

extrapolation for 2D problems, two kinds of second-order interpolations are used to

approximate the fourth-order error terms. The rotated grid interpolation Eq. (4.21)

is used for the (odd, odd) fine grid points and the standard grid interpolation Eq.
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(4.31) is used for the (odd, even) and (even, odd) fine grid points. The coefficients

As in Eqs. (4.21) and (4.31) can be viewed as a function of u which has the form of

A(u) = τFOC4/h
4. Based on the Taylor series, the O(h2) term in Eq.(4.21) has an

explicit form as 2h2

4
(∂

2(τFOC4/h
4)

∂x2 + ∂2(τFOC4/h
4)

∂y2
), and the O(h2) term in Eq.(4.31) has

an explicit form as h2

4
(∂

2(τFOC4/h
4)

∂x2 + ∂2(τFOC4/h
4)

∂y2
).

Therefore, the second-order truncation error of rotated grid interpolation Eq. (4.21)

is

τRotateInter = {
1

24
ux4y4 +

1

120
(ux6y2 + ux2y6)−

1

80
(ux8 + uy8)}h2.

The second-order truncation error of standard grid interpolation Eq. (4.31) is

τStandInter = {
1

48
ux4y4 +

1

240
(ux6y2 + ux2y6)−

1

160
(ux8 + uy8)}h2. (5.38)

And, we find that τRotateInter = 2τStandInter.

First, consider (odd, odd) fine grid points. Eq. (4.21) can be re-written as

Ai,j =
1

4
(Ai+1,j+1 + Ai+1,j−1 + Ai−1,j+1 + Ai−1,j−1) + τRotateInter, i = odd, j = odd

(5.39)

From Section 4.2, we know that the sixth-order computation for (odd, odd) fine grid

points is only related to (even, even) fine grid points. For the (even, even) fine grid

points, the definition of fourth-order solution gives

Aeven,even =
1

h4
[u∗

even,even − u4
even,even − τFOC6]. (5.40)

After injecting the extrapolated coarse grid solution into the fine grid, we have

u∗
even,even = u6

even,even + τExtrapo. (5.41)

Substituting Eq. (5.41) into Eq. (5.40) gives

Aeven,even =
1

h4
[u6

even,even − u4
even,even − τFOC6 + τExtrapo]

=
1

h4
[ceven,even − τFOC6 + τExtrapo]. (5.42)
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By using Eqs. (4.30), (5.39) and (5.42), we have the truncation error of (odd, odd)

fine grid points as

τCompEx1 = u∗
i,j − u6

i,j

= (u4
i,j + Ai,jh

4 + τFOC6)− (u4
i,j +

1

4
(ci+1,j+1 + ci+1,j−1 + ci−1,j+1 + ci−1,j−1))

= (u4
i,j + Ai,jh

4 + τFOC6)− (u4
i,j +

1

4
(Ai+1,j+1 + Ai+1,j−1 + Ai−1,j+1

+ Ai−1,j−1)h
4 + τFOC6 − τExtrapo)

= τRotateInterh
4 + τExtrapo. i = odd, j = odd (5.43)

Next, consider (odd, even) and (even, odd) fine grid points. Eq. (4.31) can be

re-written as

Ai,j =
1

4
(Ai+1,j + Ai−1,j + Ai,j+1 + Ai,j−1) + τStandInter. i = odd, j = even

i = even, j = odd (5.44)

The sixth-order computation for (odd, even) and (even, odd) fine grid points are re-

lated to both (even, even) and (odd, odd) fine grid points.

For the updated (odd, odd) fine grid points with sixth-order solutions, we have

u∗
odd,odd = u6

odd,odd + τCompEx1 = u6
odd,odd + τRotateInterh

4 + τExtrapo. (5.45)

By using the definition of fourth-order solution for (odd, odd) fine grid points, we have

Aodd,odd =
1

h4
[u∗

odd,odd − u4
odd,odd − τFOC6]. (5.46)

Substituting Eq. (5.45) into Eq. (5.46) gives

Aodd,odd =
1

h4
[u6

odd,odd − u4
odd,odd − τFOC6 + τRotateInterh

4 + τExtrapo]

=
1

h4
[codd,odd − τFOC6 + τRotateInterh

4 + τExtrapo]. (5.47)

By using Eqs. (4.32), (5.42), (5.44) and (5.47), we obtain the truncation error of
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(even, odd) and (odd, even) fine grid points as

τCompEx2 = u∗
i,j − u6

i,j

= (u4
i,j + Ai,jh

4 + τFOC6)− (u4
i,j +

1

4
(ci+1,j + ci−1,j + ci,j+1 + ci,j−1))

= (u4
i,j + Ai,jh

4 + τFOC6)− (u4
i,j +

1

4
(Ai+1,j + Ai−1,j + Ai,j+1

+ Ai,j−1)h
4 + τFOC6 −

1

2
τRotateInterh

4 − τExtrapo)

= τStandInterh
4 +

1

2
τRotateInterh

4 + τExtrapo

= τRotateInterh
4 + τExtrapo. i = odd, j = even

i = even, j = odd (5.48)

We find that the truncation errors at (odd, odd), (odd, even) and (even, odd) fine

grid points share the same form as τRotateInterh
4 + τExtrapo, which is larger than

the truncation error of (even, even) fine grid points τExtrapo directly generated from

Richardson extrapolation as we expect. It is because extra interpolations are involved,

i.e., Eqs. (5.43) and (5.48).

In summary, all the three Richardson extrapolation-based methods are able to

compute sixth-order accurate solutions for all fine grid points. The differences on

accuracy among these methods are truncation errors at (odd, even), (even, odd) and

(odd, odd) fine grid points. For (even, even) fine grid points, Richardson extrapola-

tion is used to compute the sixth-order solution with truncation error τExtrapo. For

other three groups of fine grid points, different computational strategies are applied

to obtain sixth-order solutions, which add differernt magnitude error expressions to

the truncation error τExtrapo. Table 5.1 lists the truncation errors of different groups

of fine grid points by groups after using three Richardson extrapolation-based meth-

ods for sixth-order solution computation, respectively. Since the error expressions

involve various high-order partial derivatives on u, it is hard to conclude a quantita-
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tive relationship. By comparing the coefficients of common items, we could estimate

a possible qualitative relationship. The completed Richardson extrapolation method

may have smaller truncation errors than the iterative operator based interpolation

method, which may have smaller truncation errors than the MCG updating strategy.

Table 5.1: Truncation errors of three Richardson extrapolation-based sixth-order
methods for solving the 2D Poisson equation.

Richardson extrapolation with iterative operator based interpolation
(even, even) points τExtrapo

(odd, even) points τExtrapo +
7
48
[ 1
24
(ux4y2 + ux2y4)− 1

40
(ux6 + uy6)]}h6

(even, odd) points τExtrapo +
7
48
[ 1
24
(ux4y2 + ux2y4)− 1

40
(ux6 + uy6)]}h6

(odd, odd) points τExtrapo +
8
48
[ 1
24
(ux4y2 + ux2y4)− 1

40
(ux6 + uy6)]}h6

Richardson extrapolation with MCG updating strategy
(even, even) points τExtrapo

(odd, even) points τExtrapo +
1
12
{4× 1

24
(ux4y2 + ux2y4)− 1

40
(ux6 + 16× uy6)}h6

(even, odd) points τExtrapo +
1
12
{4× 1

24
(ux4y2 + ux2y4)− 1

40
(16× ux6 + uy6)}h6

(odd, odd) points τExtrapo + { 1
30
[4× 1

24
(ux4y2 + ux2y4)− 1

40
(ux6 + 16× uy6)]

+ 1
30
[4× 1

24
(ux4y2 + ux2y4)− 1

40
(16× ux6 + uy6)]

+ 1
20
[ 1
24
(ux4y2 + ux2y4)− 1

40
(ux6 + uy6)]}h6

Richardson extrapolation with completed Richardson extrapolation
(even, even) points τExtrapo

(odd, even) points τExtrapo + { 1
24
ux4y4 +

1
120

(ux6y2 + ux2y6)− 1
120

(ux8 + uy8)}h6

(even, odd) points τExtrapo + { 1
24
ux4y4 +

1
120

(ux6y2 + ux2y6)− 1
120

(ux8 + uy8)}h6

(odd, odd) points τExtrapo + { 1
24
ux4y4 +

1
120

(ux6y2 + ux2y6)− 1
120

(ux8 + uy8)}h6

5.3 Numerical Results

We tested three Richardson extrapolation-based sixth-order methods and compared

the accuracy and efficiency among them. The codes were written in Fortran 77

programming language and run on one login node of Lipscomb HPC Cluster at the

University of Kentucky. The node has Dual Intel E5-2670 8 Core (totally 16 cores)

with 2.6GHz and 128GB RAM.

The MSMG computation introdued in Section 1.3 is perfectly constructed for

Richardson extrapolation-based methods. Therefore, we applied it to compute fourth-

order solutions on the fine and coarse grids in all three Richardson extrapolation-based
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sixth-order methods. The standard V(1,1)-cycle algorithm was chosen. The initial

guess for the V-cycle on Ω4h was the zero vector. In general, the V-cycles on Ω2h and

Ωh stop when the L2-norm of the difference of the successive solutions is less than

10−10. The iterative operator based interpolation terminates when the L2-norm of

the correction vector of the approximate solution is less than 10−10. However, it may

change depends on the test case itself. In this section, for Problem 1, the stopping

criteria for V-cycles and the iterative operator based interpolation procedure were set

as 10−13. As for Problems 2, 3, and 4, the stopping criteria for all iterative procedures

were selected as 10−10. All of the errors reported were the maximum absolute errors

over the finest grid.

5.3.1 Test problems

We chose two 2D Poisson equations and two 3D convection-diffusion equations as

test problems. The 9-point FOC scheme (2.9) was used to compute fourth-order

solutions for the 2D test problems. The 19-point finite difference scheme (3.7) was

used to compute fourth-order solutions for the 3D test problems. In the MCG fine

grid updating computation for 3D problems, 2D sub-problems were solved by the

alternating X-Y line Gauss-Seidel method.

For convection-diffusion equations, we present numerical results on small Reynolds

number (Re). As we know, the success of Richardson extrapolation for improving

the order of accuracy of numerical approximations depends on the influence of dis-

persion and the theoretical order of accuracy achieved before the extrapolation [9].

High Reynolds number means larger influence of dispersion and causes the failure

of reaching fourth-order accuracy solutions from FOC schemes, which thereby af-

fects the accuracy of computed solutions from Richardson extrapolation. Therefore,

small Reynolds number can guarantee higher order solutions by using Richardson

extrapolation. The problems with large Reynolds numbers require different solution

strategies.
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Problem 1.

∂2u

∂x2
+

∂2u

∂y2
= −α sin(

π

b
y), (x, y) ∈ Ω = [0, λ]× [0, b],

where the boundary conditions are

u(0, y) = u(λ, y) = u(x, 0) = u(x, b) = 0.

The parameters are chosen as

α =
Fπ

Rb
, λ = 107m, b = 2π × 106m,F = 0.3× 10−7m2s−2, R = 0.6× 10−3ms−1.

The analytical solution is

u = −α( b
π
)2 sin(

πy

b
)(e

πx
b − 1).

Problem 2.

∂2u

∂x2
+

∂2u

∂y2
= −2π2 sin(πx) cos(πy), (x, y) ∈ Ω = [0, 4]× [0, 1],

which has the Dirichlet boundary condition.

The analytical solution is

u(x, y) = sin(πx) cos(πy).

Problem 3.

uxx + uyy + uzz + p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz = f(x, y, z),

(x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1], (5.49)

where the coefficients of Eq. (5.49) are set as

p(x, y, z) = q(x, y, z) = r(x, y, z) = Re.

The analytical solution is

u(x, y, z) = cos(4x+ 6y + 8z).
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Problem 4.

uxx + uyy + uzz + p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz = f(x, y, z),

(x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1], (5.50)

where the coefficients of Eq. (5.50) are set as
p(x, y, z) = Re sin y sin z cosx
q(x, y, z) = Re sinx sin z cos y
r(x, y, z) = Re sinx sin y cos z

.

The analytical solution is

u(x, y, z) = cos(4x+ 6y + 8z).

5.3.2 Accuracy and efficiency

In order to test the computed accuracy of three Richardson extrapolation-based sixth-

order methods, we refined the grid from N = 32 to N = 256 for 2D Poisson equations

(Problems 1 & 2) and from N = 16 to N = 128 for 3D convection-diffusion equations

(Problems 3 & 4). For convenience, we use the following abbreviations: “Op-Six”

reperents the Richardson extrapolation-based sixth-order method with iterative op-

erator based interpolation; “MCG-Six” means the Richardson extrapolation-based

sixth-order method with MCG updating strategy; “CR-Six” denotes the sixth-order

method with completed Richardson extrapolation.

In Table 5.2, we find that all three Richardson extrapolation-based methods can

achieve sixth-order in accuracy. The error comparison among these sixth-order meth-

ods shows that, in most situations (Problems 1, 3 and 4), the solutions computed by

the CR-Six method are slightly more accurate than those computed by the Op-Six

method, which are slightly more accurate than those from the MCG-Six method.

This observation is consistent with the theoretical analysis in Section 5.2. We need

to note that the qualitative relationship observed from Table 5.1 cannot be precisely

applied to all of the problems. As for Problem 2, the MCG-Six method obtained
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Table 5.2: Accuracy comparison among three Richardson extrapolation-based sixth-
order methods

Test Problem N Op-Six MCG-Six CR-Six
Error Order Error Order Error Order

Problem 1 32 2.824e-8 - 6.237e-8 - 1.861e-8 -
64 4.421e-10 6.00 9.867e-10 5.98 3.885e-10 6.01
128 6.891e-12 6.00 1.551e-11 5.99 4.478e-12 6.01
256 1.014e-13 6.09 2.406e-13 6.01 6.351e-14 6.14

Problem 2 32 2.498e-6 - 2.278e-6 - 8.927e-7 -
64 4.582e-8 5.77 3.624e-8 5.97 1.362e-8 6.03
128 7.662e-10 5.90 5.710e-10 5.99 2.105e-10 6.02
256 1.234e-11 5.96 8.961e-12 5.99 3.270e-12 6.01

Problem 3 16 3.547e-4 - 9.980e-4 - 1.595e-4 -
(Re=10) 32 9.234e-6 5.26 2.023e-5 5.62 2.517e-6 5.99

64 1.764e-7 5.71 3.403e-7 5.89 3.842e-8 6.03
128 3.062e-9 5.85 5.463e-9 5.96 9.324e-10 5.36

Problem 4 16 6.126e-5 - 2.056e-4 - 2.322e-5 -
(Re=10) 32 1.396e-6 5.46 3.694e-6 5.80 3.569e-7 6.02

64 2.557e-8 5.77 6.035e-8 5.94 5.474e-9 6.03
128 4.575e-10 5.80 9.816e-10 5.94 1.160e-10 5.56

more accurate solutions than the Op-Six method, although the CR-Six method still

performed the best in solution accuracy among the three methods. The explanation

for this lies in the uncertainty of high order partial differential terms involved in the

truncation errors. It is hard to determine the magnitude and sign of these high order

partial differential terms. Therefore, we cannot draw a certain qualitative relationship

on accuracy among the three Richardson extrapolation-based sixth-order methods.

We also recorded the computing time for solving four test problems by three

different sixth-order methods. In Table 5.3, we find that the MCG-Six method and the

CR-Six method have better computational efficiency than the Op-Six method as we

expected. It is because the Op-Six method involves the iterative refinement procedure

which requires additional CPU time. There is no evident difference between the MCG-

Six method and the CR-Six method on CPU cost in most situations (Problems 1,

2 and 3). Both are very efficient. However, for Problem 4, the CR-Six method ran

much faster than the MCG-Six method. One possible reason is that the process of
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Table 5.3: CPU time in seconds for three Richardson extrapolation-based sixth-order
methods

N Problem 1 Problem 2
Op-Six MCG-Six CR-Six Op-Six MCG-Six CR-Six

32 0.006 0.005 0.005 0.007 0.004 0.004
64 0.025 0.020 0.021 0.031 0.021 0.022
128 0.101 0.091 0.092 0.124 0.090 0.090
256 0.433 0.395 0.394 0.491 0.403 0.393

Problem 3 (Re=10) Problem 4 (Re=10)
Op-Six MCG-Six CR-Six Op-Six MCG-Six CR-Six

16 0.021 0.017 0.013 0.017 0.021 0.011
32 0.159 0.130 0.108 0.149 0.162 0.099
64 0.907 0.618 0.732 1.318 0.928 0.408
128 5.576 3.649 3.872 5.139 4.378 2.850

solving 2D sub-problems in the MCG-Six method took a lot of CPU time for this test

problem.

5.4 Concluding Remarks

We studied three Richardson extrapolation-based sixth-order methods and analyzed

the truncation errors of them respectively. All of the three methods are able to

achieve the sixth-order accuracy on the fine grid. From the truncation error analy-

sis, we summarized a general qualitative relationship on the accuracy among these

methods. Four simple 2D and 3D problems are tested to compare the solution accu-

racy and computational efficiency among the three Richardson extrapolation-based

sixth-order methods experimentally. The numerical results are basically consistent

with the observation from the truncation error analysis.

From the theoretical and numerical comparison, we find that the Op-Six method

can achieve relatively more accurate sixth-order solutions but ask for more compu-

tational cost. The MCG-Sixth order method computes sixth-order solutions with

larger errors, but has high computational efficiency. The CR-Sixth method performs

well both on accuracy and efficiency for “simple” problems with “good” conditions.
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Here, the “simple” and “good” mean that the problems are not hard to solve (e.g.,

diffusion-dominated with small Reynolds number) and have very smooth solutions,

forcing functions and coefficients in the domain.

Copyright c⃝ Ruxin Dai 2014
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6 Higher-Order ADI method with Completed Richardson Extrapolation
for Unsteady-State Equations

6.1 Introduction

We consider the unsteady two dimensional (2D) convection-diffusion equation for a

transport variable u

∂u

∂t
− a

∂2u

∂2x
− b

∂2u

∂2y
+ p

∂u

∂x
+ q

∂u

∂y
= 0, (x, y, t) ∈ Ω× (0, T ], (6.1)

with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

and Dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ],

where Ω is a rectangular domain with the boundary ∂Ω, (0, T ] is the time interval,

and g and u0 are given functions of sufficient smoothness. In Eq. (6.1), p and q are

constant, convective velocities and a and b are constant, positive diffusion coefficients

in the x and y directions, respectively. In computational fluid dynamics, Eq. (6.1)

is widely used to model the convection and diffusion of various physical quantities,

such as mass, heat, energy, and vorticity [59].

The alternating direction implicit (ADI) methods, which aim to reduce multi-

dimensional problems to a series of one dimensional (1D) problems and thus are only

required to solve tridiagonal systems, are highly efficient for solving parabolic and

hyperbolic initial-boundary value problems. The ADI scheme proposed by Peaceman

and Rachford [55] is considered to be among the most popular methods for solving

Eq. (6.1) because of its unconditional stability and high efficiency. However, the

Peaceman-Rachford ADI scheme is second-order accuracy in space and may produce

considerable dissipation and phase errors. To obtain more accurate solutions with
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higher-order, many efforts are put to use high-order compact (HOC) schemes for

spatial approximations of Eq. (6.1)[39, 54, 58, 68, 98]. Although these methods are

generally able to achieve third or fourth-order accuracy in space, they have heavy

computational cost because they do not apply ADI methods.

Due to the advantage of ADI methods in computational efficiency and the su-

periority of HOC schemes in solution accuracy, there has been growing interest in

combining ADI methods with HOC schemes to develop numerical solutions for solv-

ing Eq. (6.1). Karaa and Zhang [41] proposed a high-order ADI (HOC-ADI) method

for solving unsteady convection-diffusion equations, which reaches high-order accu-

racy and high computational efficiency simultaneously. You [83] proposed a Padé

scheme-based ADI method for 2D unsteady convection-diffusion equations, which

has better phase and amplitude properties. Tian and Ge [30, 74] proposed an ex-

ponential high-order compact alternating direction implicit (EHOC-ADI) method for

solving 2D and 3D unsteady convection-diffusion equations, which performs better for

solving convection-dominated equations with large Reynolds numbers. Later, Tian

[75] derived a rational HOC scheme with ADI (RHOC-ADI) method for unsteady

convection-diffusion equations and demonstrated its good performance in solution

accuracy and computational efficiency. All these mentioned methods have fourth-

order accuracy in space and second-order accuracy in time with high computational

efficiency.

Recently, further improvements on a series of ADI methods have been achieved.

One group of people use higher-order difference schemes with ADI methods to ob-

tain sixth-order accuracy in space [45, 52]. Another group of people make efforts to

improve the temporal accuracy and develop ADI methods with fourth-order accu-

racy in time [21, 31, 46, 76]. Among these methods, Richardson extrapolation [56]

is a compelling method, which uses the computed solutions from different discretized

computational domains to remove the leading truncation error terms and improve the
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order of accuracy of numerical solutions. The Richardson extrapolation computation

for high accuracy solutions has been applied to steady-state equations [69, 79, 81]

and unsteady-state equations [9, 31, 46, 101].

In this work, we want to improve the solution accuracy in spatial and temporal

domains simultaneously by using completed Richardson extrapolation and keep high

computational efficiency by involving the Peaceman-Rachford ADI scheme. The com-

pleted Richardson extrapolation was proposed by Roache and Knupp [60] for the 1D

Poisson equation and then extended to 1D unsteady convection-diffusion equations

by Richards [57]. The main idea is to interpolate, not the higher-order solution, but

rather the correction between the lower-order solution and the higher-order solution

to reach the entire higher-order solution on the fine grid. We propose a higher-order

ADI (ADI-CRE) method which uses the HOC-ADI method to solve Eq. (6.1) and

applies completed Richardson extrapolation to improve the solution accuracy. Fur-

thermore, we perform a stability analysis on the ADI-CRE method and discuss the

impacts of Richardson extrapolation on the stability of numerical solutions. At last,

numerical results are provided to show the effectiveness of the proposed method.

6.2 ADI Method with Completed Richardson Extrapolation

6.2.1 High-order ADI method

In this section, we review the high-order ADI (HOC-ADI) method proposed by Karaa

and Zhang for solving 2D unsteady convection-diffusion equations [41]. In order to

solve Eq. (6.1), a uniform grid is constructed in the computational domain with

mesh-sizes ∆x and ∆y in the x and y directions, respectively. The time step size in

the t direction is denoted as ∆t.

For convenience, we define two finite difference operators about x

Lx = 1 +
∆x2

12
(δ2x −

p

a
δx), Ax = −(a+ p2∆x2

12a
)δ2x + pδx. (6.2)
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Similarly, two finite difference operators about y are defined as

Ly = 1 +
∆y2

12
(δ2y −

q

b
δy), Ay = −(b+

q2∆y2

12b
)δ2y + qδy. (6.3)

By using the techniques for developing high-order compact schemes [65], Eq. (6.1)

can be approximated by

LxLy
∂u

∂t
= −(LyAx + LxAy)u

n +O(∆4), (6.4)

where un is the approximate solution at time tn = n∆t (n ≥ 0) and O(∆4) denotes

the O(∆x4) +O(∆y4) term.

Employing Crank-Nicolson time discretization, we have

LxLy
un+1 − un

∆t
= −1

2
(LyAx + LxAy)(u

n+1 + un) +O(∆4) +O(∆t2). (6.5)

After rearrangement and multiplying Eq. (6.5) by ∆t, we have

(LxLy+
∆t

2
(LyAx+LxAy))u

n+1 = (LxLy−
∆t

2
(LyAx+LxAy))u

n+O(∆t∆4)+O(∆t3).

(6.6)

By adding terms ∆t2

4
AyAxu

n+1 and ∆t2

4
AyAxu

n to the left and right hand sides of

Eq. (6.6) respectively and applying factorization, Eq. (6.6) is changed to a perturbed

equation as

(Lx +
∆t

2
Ax)(Ly +

∆t

2
Ay)u

n+1 = (Lx −
∆t

2
Ax)(Ly −

∆t

2
Ay)u

n, (6.7)

where the perturbed term added to Eq. (6.6) has a truncation error of (O(∆t3∆2) +

O(∆t4)). Details are referred to [41].

If ∆t ≤ min(∆x,∆y), the extra term would not increase the order of truncation

error of Eq. (6.6). The approximation (6.7) has second-order accuracy in time and

fourth-order accuracy in space. By introducing an intermediate variable û, the high-

order ADI compact scheme is obtained as [41]

(Lx +
∆t
2
Ax)û = (Lx − ∆t

2
Ax)(Ly − ∆t

2
Ay)u

n,

(Ly +
∆t
2
Ay)u

n+1 = û. (6.8)
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6.2.2 Completed Richardson extrapolation in space and time

Completed Richardson extrapolation was first proposed by Roache and Knupp [60],

which provides a higher-order solution on the entire fine grid by using the correc-

tion between the lower-order solution and the higher-order solution. Later, Richards

[57] developed completed Richardson extrapolation for 1D time-dependent problems,

which was applied to the Lax-Wendroff and Crank-Nicholson finite difference schemes.

In this section, we will extend it to Karaa-Zhang’s HOC-ADI scheme for solving un-

steady 2D convection-diffusion equations.

For solving Eq. (6.1), a uniform fine grid with mesh-sizes ∆x and ∆y in the x

and y directions is constructed on the rectangular spatial domain Ω. Nx and Ny

denote the number of uniform intervals along the x and y directions, respectively. In

the t direction, the fine time step size is ∆t. The (i, j, n) point is set to correspond

to the point (i∆x, j∆y, n∆t). In order to use Richardson extrapolation, a uniform

coarse grid with mesh-sizes 2∆x and 2∆y in the x and y directions on Ω is also

constructed, and the coarse time step size in the t direction is 4∆t. The coarse grid

points then coincide in space and time with the (2i, 2j, 4n) fine grid points. For the

grid point (i, j, n), the exact solution is denoted by u∗(i∆x, j∆y, n∆t). The numerical

approximation on the fine grid point (i, j, n) is denoted by ufn
i,j. The numerical

approximation on the coinciding coarse grid point is denoted by ucni,j, where i and j

are both even and n is a multiple of 4. An example of a coarse and fine grids is given

in Fig. 6.1. Black points represent the coinciding coarse grid points. The solid line

grids denote the fine grid at coarse time steps, while dotted line grids denote the fine

grid at fine time steps.

Consider the HOC-ADI scheme with truncation error E, which has the following
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Figure 6.1: Example of a fine and coarse grid in space and time.

form as

E = O[(∆x)4, (∆y)4, (∆t)2] (6.9)

= (∆x)4τx + (∆y)4τy + (∆t)2τt +O[(∆x)6, (∆y)6, (∆t)4].

The terms τx, τy and τt denote complex expressions involving u and its partial deriva-

tives, which will be canceled in the Richardson extrapolation computation.

The error produced by the HOC-ADI scheme (6.8) over a time step ∆t has the

form of ∆tE. Assume the exact solution u∗ is known at the nth time step, then the

error of approximate solution u at the (i, j, n+ 1) fine grid point is

u∗(i∆x, j∆y, (n+ 1)∆t)− ufn+1
i,j = ∆tE

= ∆t(∆x)4τx +∆t(∆y)4τy + (∆t)3τt +O[∆t(∆x)6,∆t(∆y)6, (∆t)5]. (6.10)

Because the error produced for a few subsequent time steps on the fine grid can

be assumed to have the same magnitude as the one produced from the nth to the

(n + 1)th time step, the subsequent error is approximated to O(∆t). And, the error

contribution at each time step can be assumed to be cumulative. Therefore, the error
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on the fine grid at the (n+ 4)th time step has the form as

u∗(i∆x, j∆y, (n+ 4)∆t)− ufn+4
i,j

= 4∆t(∆x)4τx + 4∆t(∆y)4τy + 4(∆t)3τt

+O[(∆t)2(∆x)4,∆t(∆x)6, (∆t)2(∆y)4,∆t(∆y)6, (∆t)5]. (6.11)

If i and j are chosen as even, the grid point at the (n + 4)th time step can also

be involved in the coarse grid approximation. The error produced after one time step

on the coarse grid is

u∗(i∆x, j∆y, (n+ 4)∆t)− ucn+4
i,j

= 4∆t(2∆x)4τx + 4∆t(2∆y)4τy + (4∆t)3τt +O[∆t(∆x)6,∆t(∆y)6, (∆t)5]. (6.12)

For all coarse grid points (i, j, n + 4), we could use a linear combination of the

approximations on the fine and coarse grids to remove all leading error terms and

obtain a new extrapolated approximation as

ũn+4
i,j =

16ufn+4
i,j − ucn+4

i,j

15

= u∗(i∆x, j∆y, (n+ 4)∆t)

+O[(∆t)2(∆x)4,∆t(∆x)6, (∆t)2(∆y)4,∆t(∆y)6, (∆t)5]. (6.13)

Since the improved solution is on the coarse grid, only the coinciding fine grid

points can obtain better approximations by directly interpolating the extrapolated

coarse grid solution. In order to compute better approximations for the remaining

fine grid points at the coarse time step (the non-black points on the solid line grids in

Fig. 6.1), we use the correction between the previous solution and the extrapolated

solution.

Let

Γn
i,j = 4∆t(∆x)4τx + 4∆t(∆y)4τy + 4(∆t)3τt. (6.14)
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The fine grid error at a coarse time step given by Eq. (6.11) can be written as

u∗(i∆x, j∆y, (n+ 4)∆t)− ufn+4
i,j

= Γn
i,j +O[(∆t)2(∆x)4,∆t(∆x)6, (∆t)2(∆y)4,∆t(∆y)6, (∆t)5]. (6.15)

The coinciding coarse grid points obtain better extrapolated solutions by elimi-

nating Γn
i,j through Eq. (6.13). Substituting Eq. (6.13) into Eq. (6.15) gives

Γn
i,j = ũn+4

i,j − ufn+4
i,j +O[(∆t)2(∆x)4,∆t(∆x)6, (∆t)2(∆y)4,∆t(∆y)6, (∆t)5], (6.16)

where i and j are both even, which can be viewed as the correction between the

previous solution and the extrapolated solution on the coarse grid.

To compute better solutions at the fine grid points, we need to compute similar

corrections Γn
i,j for all fine grid points. The correction for (even, even) fine grid points

can be directly obtained from the correction of coarse grid points by using Eq. (6.16).

The corrections for other fine grid points can be approximated from the correction of

(even, even) fine grid points. By using the idea presented in Section 4.2, the rotated

grid interpolation is used to compute the correction for (odd, odd) fine grid points by

Γn
i,j =

1

4
[Γn

i+1,j+1 + Γn
i+1,j−1 + Γn

i−1,j+1 + Γn
i−1,j−1]

+O[∆t(∆x)5∆y,∆t∆x(∆y)5, (∆t)4∆x∆y]. (6.17)

Then, the standard grid interpolation is used to compute the correction for (odd, even)

and (even, odd) fine grid points by

Γn
i,j =

1

4
[Γn

i+1,j + Γn
i−1,j + Γn

i,j+1 + Γn
i,j−1]

+O[∆t(∆x)5∆y,∆t∆x(∆y)5, (∆t)4∆x∆y]. (6.18)

By combining Eqs. (6.16), (6.17) and (6.18), an improved solution on the entire fine

grid at coarse time step can be obtained by

ũn+4
i,j = ufn+4

i,j + Γn
i,j. (6.19)
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The error in the above approximation has the form as

u∗(i∆x, j∆y, (n+ 4)∆t)− ũn+4
i,j

= O[(∆t)2(∆x)4,∆t(∆x)6, (∆t)2(∆y)4,∆t(∆y)6, (∆t)5,

∆t(∆x)5∆y,∆t∆x(∆y)5, (∆t)4∆x∆y]. (6.20)

Thus, the improved fine grid solution, given by Eq. (6.19), at worst, has a truncation

error ofO[∆t(∆x)4, (∆x)6,∆t(∆y)4, (∆y)6, (∆t)4, (∆x)5∆y,∆x(∆y)5, (∆t)3∆x∆y]. If

∆t ≤ min(∆x,∆y)2, the new approximation scheme (6.19) can achieve sixth-order

in space and fourth-order in time.

6.2.3 Higher-order ADI method with completed Richardson extrapola-
tion

In our ADI-CRE method, the HOC-ADI scheme is applied to compute both the

coarse and fine grid solutions with corresponding coarse and fine time steps. At

each coarse time step, the completed Richardson extrapolation is used to update the

solutions on both coarse and fine grids. The updated solutions are continually used

for computing on their respective grids with corresponding time steps. Therefore,

the improved solution is obtained at all coarse time steps. We could also carry out

the extrapolation procedure after any number of coarse time steps, even just once

after the final coarse time step. However, one could expect that the extrapolation

technique would be most effective at improving the accuracy of the numerical solution

when it is applied after each coarse time step.

Suppose a solution is required at t = T which can be calculated with N coarse

time steps. Algorithm 4 describes the proposed method in which the extrapolation

procedure is carried out after each coarse time step.
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Algorithm 4 Higher-Order ADI Method with Completed Richardson Extrapolation
for Solving 2D Unsteady Convection-Diffusion Equations

Construct and initialize the fine and coarse grids
for nc = 1 to N do

Compute the coarse grid solution with coarse time step using Eq. (6.8)
for nf = 1 to 4 do

Compute the fine grid solution with fine time step using Eq. (6.8)
end for
Calculate the extrapolated solution on the coarse grid using Eq. (6.13)
Calculate the extrapolated solution on the fine grid using Eq. (6.19) in the

order:
1. compute (even,even) fine grid nodes
2. compute (odd,odd) fine grid nodes
3. compute (even,odd) and (odd,even) fine grid nodes

Both coarse and fine grids have improved solutions
end for

6.3 Stability Analysis

To study the stability of the ADI-CRE method, we use the von Neumann linear

stability analysis. Assume that the numerical solution can be expressed by means of

a Fourier series, whose typical term is

un
ij = ηn exp [Iθxi] exp [Iθyj], (6.21)

where I =
√
−1, ηn is the amplitude at time step n, and θx(= kx∆x) and θy(=

ky∆y) are phase angles with the wavenumbers kx and ky in the x and y directions,

respectively. Therefore, for a stable method, the amplification factor G(θx, θy) =

ηn+1/ηn has to satisfy the stability condition |G(θx, θy)| ≤ 1, for all (θx, θy) in [−π, π].

We know that the improved fine grid solution is the sum of a fourth-order fine

grid solution and an estimated correction. The correction is computed by a linear

combination of the differences between the extrapolated higher-order coarse grid so-

lution and the computed lower-order coarse grid solution. If completed Richardson

extrapolation is only applied once after the final coarse time step, the stability de-

pends on the method used to compute lower-order solutions on the fine and coarse

grids. The involved HOC-ADI method is unconditionally stable [41], so the solution
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is guaranteed to be stable. If completed Richardson extrapolation is used after each

coarse time step, we only need to consider the stability of the extrapolated coarse

grid solution. The process of computing improved fine grid solutions at coarse time

steps does not need to be considered because linear combination procedures do not

undermine the stability.

Assume

Pc = (Lxc +
∆tc
2

Axc)(Lyc +
∆tc
2

Ayc),

Qc = (Lxc −
∆tc
2

Axc)(Lyc −
∆tc
2

Ayc),

Pf = (Lxf +
∆tf
2

Axf )(Lyf +
∆tf
2

Ayf ),

Qf = (Lxf −
∆tf
2

Axf )(Lyf −
∆tf
2

Ayf ),

where Lxc, Axc, Lyc, and Ayc are the finite difference operators about x and y defined

by Eqs. (6.2) and (6.3) for coarse grid, respectively, and similarly, Lxf , Axf , Lyf ,

and Ayf are the finite difference operators with respect to x and y for fine grid,

respectively.

According to the HOC-ADI scheme (6.7), we have

Pcu
n+1
c = Qcu

n
c ,

Pfu
n+1
f = Qfu

n
f ,

which lead to the approximations on the coarse and fine grids, respectively, in the

form as

un+1
c =

Qc

Pc

un
c ,

un+1
f =

Qf

Pf

un
f . (6.22)

Algorithm 4 shows that the extrapolated computation is only conducted at the

coarse time step and ∆tc = 4∆tf is established. The extrapolated solution on the
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coarse grid at n+ 1 coarse time step is

ũn+1
c =

16un+4
f

15
− un+1

c

15

=
16

15
(
Qf

Pf

)4un
f −

1

15

Qc

Pc

un
c , (6.23)

where ũ denotes the extrapolated solution.

Since un
f and un

c in Eq. (6.23) are both obtained from the extrapolated coarse grid

solution at the nth coarse time step, we have

ũn+1
c = [

16

15
(
Qf

Pf

)4 − 1

15

Qc

Pc

]ũn
c . (6.24)

Assume a = b = 1 in Eq. (6.1). By substituting the discrete Fourier mode (6.21)

into Eq. (6.24), the amplification factor G(θx, θy) can be written as

G(θx, θy) =
16

15
g4fx(

θx
2
)g4fy(

θy
2
)− 1

15
gcx(θx)gcy(θy), (6.25)

where

gfx(
θx
2
) =

(γ1fx(
θx
2
)− γ2fx(

θx
2
))− (γ3fx(

θx
2
) + γ4fx(

θx
2
))I

(γ1fx(
θx
2
) + γ2fx)(

θx
2
) + (γ4fx(

θx
2
)− γ3fx(

θx
2
))I

,

gcx(θx) =
(γ1cx(θx)− γ2cx(θx))− (γ3cx(θx) + γ4cx(θx))I

(γ1cx(θx) + γ2cx(θx)) + (γ4cx(θx)− γ3cx(θx))I
,

with

γ1fx(
θx
2
) = γ1cx(

θx
2
), γ2fx(

θx
2
) = γ2cx(

θx
2
),

γ3fx(
θx
2
) =

1

2
γ3cx(

θx
2
), γ4fx(

θx
2
) =

1

2
γ4cx(

θx
2
),

γ1cx(θx) = 1− 1

3
sin2 θx

2
, γ2cx(θx) = 2∆t(

1

∆x2
+

p2

12
) sin2(

θx
2
),

γ3cx(θx) =
p∆x

12
sin θx, γ4cx(θx) =

p∆t

2∆x
sin θx,

being all non-negative. The other terms gcy(θy) and gfy(
θy
2
) are defined similarly

by replacing x by y and p by q in the above expressions. From [41], we know that

|gcx(θx)| ≤ 1 and |gfx( θx2 )| ≤ 1. gcy(θy) and gfy(
θy
2
) have similar inequalities.
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In order to find the condition for |G(θx, θy)| ≤ 1, we need to solve the inequality

|16
15

g4fx(
θx
2
)g4fy(

θy
2
)− 1

15
gcx(θx)gcy(θy)| ≤ 1. (6.26)

Since sin θ has the same range as sin θ
2
with θ in [−π, π] and gf (θ) shares the same

real parts as gc(θ) for both x and y, the inequality (6.26) can be written as

|16
15

g4cx(θx)g
4
cy(θy)−

1

15
gcx(θx)gcy(θy)| ≤ 1. (6.27)

Because gcx(θx) has the same form as gcy(θy) with both θx and θy in [−π, π], it is

reasonable to assume that |gcx(θx)| and |gcy(θy)| have the same upper bound M ,

where |M | < 1. The inequality (6.27) holds if

16

15
M8 +

1

15
M2 ≤ 1, (6.28)

which is

M2 ≤ 4

√
7

8
. (6.29)

We can choose a number which is close to but smaller than 4

√
7
8
as the upper bound

for M2 to simplify analysis. Here, 29
30

is selected and the problem becomes

M2 ≤ 29

30
. (6.30)

For simplicity, we assume ∆ = ∆x = ∆y and a general form g(θ) for gcx(θx) and

gcy(θy) as

g(θ) =
(γ1 − γ2)− (γ3 + γ4)I

(γ1 + γ2) + (γ4 − γ3)I
, (6.31)

where

γ1 = 1− 1

3
sin2 θ

2
, γ2 = 2∆t(

1

∆2
+

c2

12
) sin2(

θ

2
), γ3 =

c∆

12
sin θ, γ4 =

c∆t

2∆
sin θ,

with θ in [−π, π] and c representing the constant convection coefficients p and q in

Eq. (6.1).

We have

|g(θ)|2 = A− 2B

A+ 2B
≤ |M |2 ≤ 29

30
, (6.32)
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where A = γ2
1 + γ2

2 + γ2
3 + γ2

4 and B = γ1γ2 − γ3γ4.

From (6.32), we get the inequality

A ≤ 118B (6.33)

First consider the lower bound of B. A simple calculation shows that

γ1γ2 = 2∆t(1− 1

3
sin2 θ

2
)(

1

∆2
+

c2

12
) sin2 θ

2
,

γ3γ4 = c2
∆t

6
(1− sin2 θ

2
) sin2 θ

2
≤ c2

∆t

6
(1− 1

3
sin2 θ

2
) sin2 θ

2
.

Hence, we have

B = γ1γ2 − γ3γ4 ≥
2∆t

∆2
(1− 1

3
sin2 θ

2
) sin2 θ

2
=

3∆t

2∆2
. (6.34)

Substituting (6.34) into (6.33) gives

A ≤ 177
∆t

∆2
. (6.35)

Then consider the upper bound of A as

A = γ2
1 + γ2

2 + γ2
3 + γ2

4 ≤ 1 + 4(
∆t

∆2
+

∆tc2

12
)2 + (

c∆

12
)2 +

c2∆t

4

∆t

∆2
. (6.36)

If set λ = ∆t
∆2 and µ = c∆, from (6.36) we have

A ≤ 1 + 4(λ+
λc2∆2

12
)2 +

c2∆2

144
+

λ2c2∆2

4

= 1 + 4(λ2 +
λ2c4∆4

144
+ λ2 c

2∆2

6
) +

(c∆)2

144
+

λ2c2∆2

4

= (4 +
µ4

144
+

µ2

6
+

µ2

4
)λ2 + (1 +

µ2

144
). (6.37)

Substituting (6.37) into (6.35) gives

(4 +
5

12
µ2 +

µ4

144
)λ2 − 177λ+ (1 +

µ2

144
) ≤ 0. (6.38)

Therefore, the solution of (6.38) can guarantee the stability condition of the ADI-

CRE method. If c = 0, the solution of (6.38) is easy to calculate and 0.00565 ≤ λ ≤
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44.24435, which is 0.00565 ≤ ∆t
∆2 ≤ 44.24435. We notice that the stability range for

pure diffusion equations with p = q = 0 is wide. If c ̸= 0, there exists a solution of

(6.38) when the following inequality is satisfied

1772 − 4(4 +
5

12
µ2 +

µ4

144
)(1 +

µ4

144
) ≥ 0, (6.39)

which leads to

µ2 ≤ C, (6.40)

where C is a constant.

Since µ2 = ∆2c2, in order to satisfy (6.40), a large c needs a finer mesh in spa-

tial space. The closer the µ2 approaches to the upper bound C, the narrower the

solution range of λ becomes and a smaller time step size is required. Therefore, for

convection-dominated equations with large convection coefficients p and q, it is diffi-

cult for the ADI-CRE method to obtain accurate solutions because of strict stability

conditions. One possible reason is that the HOC-ADI method works not very well for

convection-dominated equations [74]. If other ADI methods with better performance

for convection-dominated equations, such as EHOC-ADI method, are involved in the

ADI-CRE method, there might be able to have a better range of stability.

In summary, Richardson extrapolation affects the stability feature of the ADI

method with which it combines. Even for the solution from an unconditionally stable

ADI method, when the Richardson extrapolation procedure is applied at every coarse

time step, the solution may become conditionally stable. Additionally, the range of

stability is also influenced by the ADI method used for computation.

6.4 Numerical Results

In this section, we performed numerical experiments to show the accuracy and effi-

ciency of the proposed ADI-CRE method and compared it with Karaa-Zhang’s ADI

scheme (HOC-ADI) [41]. Both ADI methods need to repeatedly solve a series of tridi-

agonal systems. The codes were written in Fortran 77 programming language and
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all results were run on one login node of Lipscomb HPC Cluster at the University of

Kentucky. The node has Dual Intel E5-2670 8 Core with 2.6GHz and 128GB RAM.

6.4.1 Test problem 1

The first test problem is a pure diffusion equation in the unit square domain [0, 1]×

[0, 1], with diffusion coefficients a = b = 1 (and p = q = 0). The analytical solution

to this problem is given by

u(x, y, t) = exp(−2π2t) sin(πx) sin(πy).

The initial condition and Dirichlet boundary condition are directly taken from this

solution.

We tested two ADI-CRE methods and compared them with the HOC-ADI method

on a uniform grid with different mesh-sizes. Assume ∆x = ∆y = h. The numerical re-

sults are given in Table 6.1. The ADI-CRE(I) method uses the completed Richardson

extrapolation once after the final coarse time step. The ADI-CRE(II) method uses

the extrapolation technique after each coarse time step. We compared their accuracy

under the L2-norm error with respect to the analytic solution and the convergence

rate. In Table 6.1, we chose ∆t = h2 and T = 0.25 for the verification of sixth-order

accuracy in space. We find that the solutions from the ADI-CRE methods are more

accurate than those from the HOC-ADI method under the same mesh-size. We also

recorded the CPU time for them and noticed that the ADI-CRE methods took slightly

longer time than the HOC-ADI method because of the extrapolation computation.

This extra time is worth the evident improvement on accuracy. When we compared

the two ADI-CRE methods, they had very close performances. Although the errors

from the ADI-CRE(II) method are slightly smaller than those from the ADI-CRE(I)

method, the price is to marginally increase computing time for more extrapolation

procedures.

In Table 6.2, we fixed the mesh-size as ∆x = ∆y = h = 1/40 and computed
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Table 6.1: L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/N and ∆t = h2 at T = 0.25 for Problem 1.

Strategy N Error CPU time Rate
HOC-ADI 20 8.525e-7 0.004 -

40 5.345e-8 0.077 4.00
80 3.341e-9 0.849 4.00
160 2.088e-10 8.973 4.00

ADI-CRE(I) 20 1.856e-8 0.005 -
40 2.881e-10 0.081 6.01
80 4.493e-12 0.954 6.00
160 6.671e-14 9.304 6.07

ADI-CRE(II) 20 1.567e-8 0.005 -
40 2.604e-10 0.083 5.91
80 4.133e-12 1.119 5.98
160 6.080e-14 9.704 6.09

for T = 0.5 with various time step sizes. We observe that, for the errors, the ADI-

CRE methods decrease faster than the HOC-ADI method with the reduction in time

step size. Therefore, the completed Richardson extrapolation effectively improves the

temporal accuracy. The convergence rate of ADI-CRE(I) verifies that the order of

time accuracy can reach near to fourth-order. Moreover, the results of ADI-CRE(II)

show that the extrapolation technique is more effective at improving the accuracy of

numerical solutions when it is applied after each coarse time step.

Table 6.2: L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/40 at T = 0.5 for Problem 1.

Strategy ∆t Error CPU time Rate
HOC-ADI 1/40 1.274e-6 0.004 -

1/80 3.224e-7 0.008 1.98
1/160 8.082e-8 0.016 2.00
1/320 2.019e-8 0.031 2.00

ADI-CRE(I) 1/40 3.109e-7 0.005 -
1/80 2.167e-8 0.009 3.84
1/160 1.665e-9 0.016 3.70
1/320 1.846e-10 0.033 3.17

ADI-CRE(II) 1/40 8.170e-7 0.005 -
1/80 6.625e-8 0.009 3.62
1/160 3.101e-10 0.017 7.74
1/320 6.012e-11 0.034 2.37
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In Fig. 6.2, we plotted the L2-norm errors at each coarse time step in each case.

The figure shows the superiority of the ADI-CRE method over the HOC-ADI method.

The error obtained on a 40 × 40 grid using the ADI-CRE method is much smaller

than the one obtained using the HOC-ADI method on a 80× 80 grid.

0.0 0.1 0.2 0.3 0.4 0.5

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

L2
-n

or
m

 e
rr

or

Time t(s)

 HOC-ADI h=1/40
 ADI-CRE h=1/40
 HOC-ADI h=1/80
 ADI-CRE h=1/80

Figure 6.2: Comparison of the L2-norm errors produced by the CRE-ADI(II) method
and the HOC-ADI method at each coarse time step for Problem 1.

6.4.2 Test problem 2

Next, we consider a special problem defined in the square domain [0, 2]× [0, 2], with

an analytical solution given, as in [41], by

u(x, y, t) =
1

4t+ 1
exp[−(x− pt− 0.5)2

a(4t+ 1)
− (y − qt− 0.5)2

b(4t+ 1)
].

The Dirichlet boundary and the initial conditions are directly taken from this solution.

For the sake of comparison, we chose a = b = 0.01 and p = q = 0.8.

The comparison between the ADI-CRE method and the HOC-ADI method are

presented in Tables 6.3 and 6.4. All computation were ran on a uniform grid with

∆x = ∆y = h. Analogously, we tested two ADI-CRE methods. The ADI-CRE(I)
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Table 6.3: L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 2/N and ∆t = h2 at T = 0.5 for Problem 2.

Strategy N Error CPU time Rate
HOC-ADI 20 8.307e-3 0.005 -

40 8.999e-4 0.078 3.21
80 6.000e-5 0.868 3.91
160 3.762e-6 8.967 4.00

ADI-CRE(I) 20 7.637e-3 0.005 -
40 5.572e-4 0.085 3.78
80 1.207e-5 0.916 5.53
160 1.773e-7 9.266 6.09

ADI-CRE(II) 20 6.207e-3 0.005 -
40 4.396e-4 0.087 3.82
80 1.006e-5 0.980 5.45
160 1.663e-7 9.741 5.92

applies the completed Richardson extrapolation once after the final coarse time step.

The ADI-CRE(II) uses the extrapolation technique after each coarse time step. Both

tables show that the solutions from the ADI-CRE methods are more accurate than

those from the HOC-ADI method, yet the extrapolation procedure needs slightly more

CPU time. Compared with the ADI-CRE(I) method, the ADI-CRE(II) method took

more CPU time to compute more accurate solutions. In Table 6.3, we halved the

mesh-size and computed numerical solutions by using different methods. We notice

that, in the spatial domain, the ADI-CRE method achieves the sixth-order accuracy,

while the HOC-ADI method has the fourth-order accuracy. Table 6.4 verifies that

the proposed method effectively improves the accuracy in the temporal domain. The

ADI-CRE method has the fourth-order accuracy in time, which is consistent with our

expectation.

The L2-norm errors at each coarse time step in each case were plotted in Fig. 6.3.

This figure shows that the errors from both methods have the same behavior. The

errors after applying the completed Richardson extrapolation remain smaller than

the error directly from the HOC-ADI scheme.
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Table 6.4: L2-norm errors, CPU time in seconds and the convergence rate in space
with h = 1/80 at T = 1.0 for Problem 2.

Strategy ∆t Error CPU time Rate
HOC-ADI 1/20 3.103e-3 0.073 -

1/40 7.653e-4 0.145 2.02
1/80 1.900e-4 0.291 2.01
1/160 4.699e-5 0.580 2.02

ADI-CRE(I) 1/20 3.446e-3 0.079 -
1/40 4.000e-4 0.156 3.11
1/80 2.593e-5 0.309 3.95
1/160 1.616e-6 0.611 4.01

ADI-CRE(II) 1/20 1.264e-3 0.080 -
1/40 1.057e-4 0.160 3.58
1/80 8.962e-6 0.318 3.56
1/160 1.096e-6 0.633 3.03
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Figure 6.3: Comparison of the L2-norm errors produced by the CRE-ADI(II) method
and the HOC-ADI method at each coarse time step for Problem 2.
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6.5 Concluding Remarks

We proposed a higher-order ADI method with completed Richardson extrapolation

(ADI-CRE) for solving unsteady 2D convection-diffusion equations. The method has

sixth-order accuracy in space and fourth-order accuracy in time. The von Neumann

stability analysis is performed to show that the Richardson extrapolation computa-

tion affects the stability of the numerical solutions. The ADI-CRE method, which

involves the extrapolation procedure after every coarse time step, has a wide stability

range for diffusion-dominated equations, but strict stability conditions for convection-

dominated equations. When only carrying out the extrapolation procedure once after

the final coarse time step, the stability of ADI-CRE method depends on the high-

order ADI method bound with. To demonstrate the high accuracy and efficiency of

the ADI-CRE method, numerical experiments were conducted on two test problems.

The computational results show that the present ADI-CRE method successfully im-

proves the order of accuracy in spatial and temporal domains simultaneously. Finally,

it is worth pointing out that the completed Richardson extrapolation can work with

other ADI methods to compute high accuracy solutions for other types of time depen-

dent equations. With different ADI methods, Richardson extrapolation computation

will influence the stability in different ways. We will discuss these topics in the future.

Copyright c⃝ Ruxin Dai 2014
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7 Conclusion and Future Work

This dissertation presents the research work in scientific computing to develop high ac-

curacy and high efficiency scalable numerical algorithms for solving large scale partial

differential equations. This work involves Richardson extrapolation applications, high

order discretization of partial differential equations, efficient solvers for discretizaed

linear systems, truncation error analysis, von Neumann linear stability analysis, and

numerical verifications. In this chapter, I will summarize my dissertation work and

present some future research topics.

7.1 Research Accomplishments

In computational science and engineering (CSE) field, numerical solutions of partial

differential equations (PDEs) play a vital role in various computer modeling and sim-

ulation applications. This dissertation proposed a series of numerical algorithms to

achieve both high accuracy and high efficiency goals simultaneously. The high or-

der accuracy is reached by using high order compact (HOC) difference discretization

schemes and Richardson extrapolation. The high computational efficiency is attained

by using efficient linear system solvers and multiple coarse grid (MCG) computation.

The multiscale multigrid (MSMG) method is used to integrate high accuracy and

high efficiency in the same framework. The HOC difference schemes mainly provide

fourth-order accurate solutions on two different scale grids. Richardson extrapolation

utilizes the two fourth-order solutions to obtain a sixth-order solution on the coarse

grid. The linear system solvers, such as multigrid methods and alternative direc-

tion implicit (ADI) methods, are able to solve the resulting linear systems from the

discretized PDEs very efficiently. The structure of multiple coarse grids enables an ef-

ficient computation for fine grid sixth-order solutions. The MSMG method combines

the Richardson extrapolation-based high accuracy computation and the multigrid
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computation in the same framework by using the multiscale strategy.

Multiple Coarse Grid Updating Strategy

A new fine grid updating strategy based on multiple coarse grids is developed to

accelerate the Richardson extrapolation-based MSMG computation. The sixth-order

solution from Richardson extrapolation is on the coarse grid. An existing strategy to

obtain sixth-order solutions for fine grid points is to iteratively perform an operator

based interpolation on the fine grid in a specific sequence. However, this procedure

equals to an iterative refinement procedure, which has a slow convergence rate and

requires a lot of CPU time. In order to curtail the CPU cost, a direct calculation

method is proposed to replace the existing iterative procedure for computing fine grid

sixth-order solutions. Through combining different fine grid points to virtually gen-

erate various non-uniform coarse grid views, sixth-order solutions of fine grid points

can be directly solved group by group. Based on this idea, the MCG updating strat-

egy is developed for 2D and 3D problems, respectively. The MSMG method with

Richardson extrapolation and MCG updating strategy was tested to solve 2D and 3D

steady-state PDEs, which are presented in Chapters 2 and 3.

Sixth-order Solution with Completed Richardson Extrapolation

The completed Richardson extrapolation was applied to compute sixth-order solu-

tions on the entire fine grid. Although people usually use the extrapolated sixth-

order coarse grid solution to seek appropriate interpolation process for computing

sixth-order fine grid solution, the proposed method uses the correction between the

fourth order solution and the extrapolated sixth-order solution on the coarse grid to

estimate the fine grid fourth-order error, which can be added back to the fourth-order

solution and thus obtain the sixth-order solution oh the fine grid. Since the completed
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Richardson extrapolation involves simple calculations, the proposed method is able

to achieve high accuracy with low CPU costs.

Truncation Error Comparison among Three Richardson extrapolation-

based Sixth-Order Methods

We discussed three Richardson-extrapolated sixth-order methods for solving PDEs.

Although all of these methods can reach sixth-order solutions on the entire fine grid,

they generate different errors due to different strategies for computing improved fine

grid solutions. These strategies are iterative operator based interpolation, multiple

coarse grid updating strategy, and completed Richardson extrapolation. The trunca-

tion error analysis was conducted on these methods respectively for the purpose of

accuracy comparison.

Higher-order ADI Method with Completed Richardson Extrapolation

The Richardson extrapolation technique was extended to high accuracy and high ef-

ficiency computation for unsteady 2D convection-diffusion equations. The proposed

ADI-CRE method incorporates Karra-Zhang’s high-order ADI (HOC-ADI) method

and completed Richardson extrapolation. On one hand, by constructing special coarse

grids, the completed Richardson extrapolation method can effectively improve the or-

der of computed solution from the HOC-ADI method in spatial and temporal domains

simultaneously. On the other hand, involving ADI scheme guarantees high compu-

tational efficiency. The ADI-CRE method has sixth-order accuracy in space and

fourth-order accuracy in time.

Stability Analysis on Numerical Methods with Richardson Extrapolation

For numerical solutions of unsteady-state equations, stability is a key issue to be con-
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sidered. In order to examine the influence of Richardson extrapolation upon other nu-

merical methods on stability, the von Neumann linear stability analysis was conducted

on the ADI-CRE method. We find that the Richardson extrapolation procedure un-

dermines the stability of the underlying method. When Richardson extrapolation

is applied to the solution computed from the HOC-ADI method, which is uncondi-

tionally stable, at every coarse time step, the solution becomes conditionally stable.

The range of stability is affected by convection coefficients and the underlying ADI

method.

7.2 Future Work

This dissertation has explored some fundamental work related to high accuracy high

efficiency scalable numerical solutions for PDEs. However, it is the first step in

developing useful computational frameworks for solving large scale PDEs in CSE

applications. In the near future, I will continue my research on improving MSMG

computation with multiple coarse grids, developing high accuracy and high efficiency

numerical solutions for unsteady-state PDEs, and using numerical methods to solve

application problems.

Multiple Coarse Grid MSMG Computational Framework

In Chapters 2 and 3, I used multiple coarse grids to eliminate the fine grid iterative

refinement process for high-order solution computation. Besides this benefit, the mul-

tiple coarse grids could be used to build a scalable, reliable, and concurrent MSMG

computational framework. Since the MSMG method involves multigrid computation,

it leads to different problem sizes (number of unknowns) on different grid levels. The

key issue for efficiently using multiple processor architectures in the current gener-

ation supercomputers is to maintain the amount of the computation (the problem

size) at all levels of the multigrid computation. This entails at least two issues to
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work: (1) Use multiple coarse grids to accelerate the convergence rate of multigrid

computation like in the superconvergent multigrid method. (2) Use multiple coarse

grids to independently compute sixth-order solutions for different groups of fine grid

points.

High Accuracy High Efficiency Computation for Unsteady-State PDEs

In Chapter 6, completed Richardson extrapolation was combined with a special ADI

method to improve the order of solution accuracy in time and space effectively, how-

ever, there are still many issues worthy of further study. For example: (1) How

does the selection of underlying ADI methods affect the solution accuracy and sta-

bility? (2)Is it possible to apply the idea of multiple coarse grid updating strategy

with Richardson extrapolation for high accuracy and high efficiency computation for

unsteady-state PDEs? (3) What computational strategies are appropriate for high

accuracy and high efficiency computation for hard problems, such as convection-

dominated equations with large Reynolds number, Neumann boundary conditions,

discontinuous coefficients, non-rectangular domains and etc.?

Numerical Methods Application in Financial Engineering

Numerical computational methods have been widely used in the attractive field of op-

tion pricing, which is a core task of financial engineering and risk analysis. The famous

Balck-Scholes equation, which represents the most prominent financial market model,

is essentially an unsteady-state convection-diffusion equation. Therefore, numerical

methods for PDEs (such as finite difference methods and finite element methods)

are very important methods for financial options [63]. The Richardson extrapolation

techniques are also used to enhance the computational efficiency and/or accuracy of

option pricing in the literature [3, 8, 10]. At present, Crank-Nicolson method has been
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successfully used to solve Black-Scholes equation and reached second-order accuracy.

The techniques discussed in this dissertation for computing high-order accuracy so-

lutions for PDEs with high computational efficiency are possible to apply for solving

PDEs like Black-Scholes equation in financial engineering. I would like to collaborate

with experts in finance to study computational techniques for financial models.

Copyright c⃝ Ruxin Dai 2014
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Appendix A

The coefficients of the 9-point FOC scheme for the 2D

convection-diffusion equation with unequal mesh-size discretization

For the 9-point FOC scheme Eq. (2.21), the coefficients and right-hand side are

given by

α0 = −∆x2p
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α8 = −
∆x2
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(p0q0λ
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.
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Appendix B

The coefficients of the 19-point FOC scheme for the 3D

convection-diffusion equation with unequal mesh-size discretization

For the 19-point FOC scheme Eq. (3.7), the coefficients and right-hand side are

given by
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